Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-06-18

Deciphering RNAi machineries required for miRNAs Cell-to-Cell Transfer in Mammals

Objective

Small RNAs are key post-transcriptional regulators of eukaryotic gene expression. Among the most fascinating aspects of small RNAs is their ability to cross cell boundaries owing to their non-cell-autonomy. Recently, the host laboratory demonstrated that 21-24bp siRNAs could act as mobile silencing signals in Arabidopsis. Interestingly, in C. Elegans, systemic silencing requires SID1, a transmembrane channel through which endogenous double-stranded RNA may be communicated to adjacent cells. Functional SID1 homologues and miRNAs found in secreted exosomes in mammals suggest that systemic RNA silencing might also operate in these organisms, raising the question of how this process might be regulated? Tight regulation is indeed anticipated given the exquisite expression patterns and developmental roles of many mammalian miRNAs. A first possibility for regulated miRNA movement entails that it might mostly occur between compatible “emitting” and “receiving” cells. This might be achieved via qualitatively differences in miRNAs effector complexes, localization or shear availability of silencing transporter systems. A second, non-mutually exclusive possibility is that release of miRNA through membranes might be polarized. The identification, in the host laboratory, of a requirement for multi-vesicular bodies for the assembly of miRNA effector complexes supports this idea. In fact, we propose that both mechanisms could be at work in specialized cells, such as secreting epithelia, to direct the selective release of miRNAs either along the epithelial cell layer or in body fluids. Using the mammary gland as a model system we will (i) decipher the molecular requirements for cell to “emit” or “receive” systemic miRNAs (ii) study how cell-polarization might affect miRNA cell-to-cell transfer (iii) investigate the in vivo relevance of our findings by characterizing miRNAs contained in milk, and by studying potential effects of systemic miRNA arising from grafted tumors in mice.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

FP7-PEOPLE-2011-IEF
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

MC-IEF - Intra-European Fellowships (IEF)

Coordinator

EIDGENOESSISCHE TECHNISCHE HOCHSCHULE ZUERICH
EU contribution
€ 192 622,20
Address
Raemistrasse 101
8092 Zuerich
Switzerland

See on map

Region
Schweiz/Suisse/Svizzera Zürich Zürich
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data
My booklet 0 0