Skip to main content
Ir a la página de inicio de la Comisión Europea (se abrirá en una nueva ventana)
español español
CORDIS - Resultados de investigaciones de la UE
CORDIS
Contenido archivado el 2024-06-18

Generalized Hilbert space compression and coarse geometry of data sets

Objetivo

"Metric spaces, such as graphs, occur everywhere in mathematics and are used to model real life situations: in computer science e.g. they are used to model computer networks and in sociology, graphs are used to model interhuman relations.

In order to study metric spaces, one can embed them into an object which one understands quite well. The information that we know on the latter object may then provide useful information on the embedded metric space. A Hilbert space is a well understood mathematical object which can be studied by algebraic techniques (it is a vector space, with an inner product), by analytic techniques (least square methods) and by many more tools.

Around the 1990s, Gromov introduced the notion of metric spaces that `embed uniformly' into a Hilbert space. This relatively weak condition turned out to be connected with some major conjectures: it implies the coarse Baum-Connes and Novikov conjecture in the case of finitely generated groups. The equivariant version of uniform embeddability is Haagerup's property, a property with clear connections to the Baum-Connes conjecture and a subject of intense study.

Guentner and Kaminker define the (equivariant) Hilbert space compression of a f.g. group as a number between 0 and 1 which quantifies how ""well"" the group embeds uniformly into a Hilbert space (is Haagerup respectively). Moreover, they showed that if the value of the (equivariant) compression is strictly greater than 1/2, then the group has Yu's property (A) (is amenable respectively). This shows that the compression notions contain important information on the group, making them very interesting to study.

This Marie Curie project fits in this setting. We intend to study compression through new techniques such as persistent cohomology, determine the relations between compression and related properties such as Property A and amenability and apply compression in an interdisciplinary setting by using it to study data sets."

Ámbito científico (EuroSciVoc)

CORDIS clasifica los proyectos con EuroSciVoc, una taxonomía plurilingüe de ámbitos científicos, mediante un proceso semiautomático basado en técnicas de procesamiento del lenguaje natural. Véas: El vocabulario científico europeo..

Para utilizar esta función, debe iniciar sesión o registrarse

Programa(s)

Programas de financiación plurianuales que definen las prioridades de la UE en materia de investigación e innovación.

Tema(s)

Las convocatorias de propuestas se dividen en temas. Un tema define una materia o área específica para la que los solicitantes pueden presentar propuestas. La descripción de un tema comprende su alcance específico y la repercusión prevista del proyecto financiado.

Convocatoria de propuestas

Procedimiento para invitar a los solicitantes a presentar propuestas de proyectos con el objetivo de obtener financiación de la UE.

FP7-PEOPLE-2011-IEF
Consulte otros proyectos de esta convocatoria

Régimen de financiación

Régimen de financiación (o «Tipo de acción») dentro de un programa con características comunes. Especifica: el alcance de lo que se financia; el porcentaje de reembolso; los criterios específicos de evaluación para optar a la financiación; y el uso de formas simplificadas de costes como los importes a tanto alzado.

MC-IEF - Intra-European Fellowships (IEF)

Coordinador

UNIVERSITY OF SOUTHAMPTON
Aportación de la UE
€ 200 371,80
Dirección
Highfield
SO17 1BJ SOUTHAMPTON
Reino Unido

Ver en el mapa

Región
South East (England) Hampshire and Isle of Wight Southampton
Tipo de actividad
Higher or Secondary Education Establishments
Enlaces
Coste total

Los costes totales en que ha incurrido esta organización para participar en el proyecto, incluidos los costes directos e indirectos. Este importe es un subconjunto del presupuesto total del proyecto.

Sin datos
Mi folleto 0 0