Ziel
"Metric spaces, such as graphs, occur everywhere in mathematics and are used to model real life situations: in computer science e.g. they are used to model computer networks and in sociology, graphs are used to model interhuman relations.
In order to study metric spaces, one can embed them into an object which one understands quite well. The information that we know on the latter object may then provide useful information on the embedded metric space. A Hilbert space is a well understood mathematical object which can be studied by algebraic techniques (it is a vector space, with an inner product), by analytic techniques (least square methods) and by many more tools.
Around the 1990s, Gromov introduced the notion of metric spaces that `embed uniformly' into a Hilbert space. This relatively weak condition turned out to be connected with some major conjectures: it implies the coarse Baum-Connes and Novikov conjecture in the case of finitely generated groups. The equivariant version of uniform embeddability is Haagerup's property, a property with clear connections to the Baum-Connes conjecture and a subject of intense study.
Guentner and Kaminker define the (equivariant) Hilbert space compression of a f.g. group as a number between 0 and 1 which quantifies how ""well"" the group embeds uniformly into a Hilbert space (is Haagerup respectively). Moreover, they showed that if the value of the (equivariant) compression is strictly greater than 1/2, then the group has Yu's property (A) (is amenable respectively). This shows that the compression notions contain important information on the group, making them very interesting to study.
This Marie Curie project fits in this setting. We intend to study compression through new techniques such as persistent cohomology, determine the relations between compression and related properties such as Property A and amenability and apply compression in an interdisciplinary setting by using it to study data sets."
Wissenschaftliches Gebiet (EuroSciVoc)
CORDIS klassifiziert Projekte mit EuroSciVoc, einer mehrsprachigen Taxonomie der Wissenschaftsbereiche, durch einen halbautomatischen Prozess, der auf Verfahren der Verarbeitung natürlicher Sprache beruht. Siehe: Das European Science Vocabulary.
CORDIS klassifiziert Projekte mit EuroSciVoc, einer mehrsprachigen Taxonomie der Wissenschaftsbereiche, durch einen halbautomatischen Prozess, der auf Verfahren der Verarbeitung natürlicher Sprache beruht. Siehe: Das European Science Vocabulary.
- Naturwissenschaften Mathematik reine Mathematik Algebra lineare Algebra
- Sozialwissenschaften Soziologie
- Naturwissenschaften Informatik und Informationswissenschaften
- Technik und Technologie Elektrotechnik, Elektronik, Informationstechnik Informationstechnik Telekommunikation Telekommunikationsnetz
- Naturwissenschaften Mathematik reine Mathematik Geometrie
Sie müssen sich anmelden oder registrieren, um diese Funktion zu nutzen
Wir bitten um Entschuldigung ... während der Ausführung ist ein unerwarteter Fehler aufgetreten.
Sie müssen sich authentifizieren. Ihre Sitzung ist möglicherweise abgelaufen.
Vielen Dank für Ihr Feedback. Sie erhalten in Kürze eine E-Mail zur Übermittlungsbestätigung. Wenn Sie sich für eine Benachrichtigung über den Berichtsstatus entschieden haben, werden Sie auch im Falle einer Änderung des Berichtsstatus benachrichtigt.
Programm/Programme
Mehrjährige Finanzierungsprogramme, in denen die Prioritäten der EU für Forschung und Innovation festgelegt sind.
Mehrjährige Finanzierungsprogramme, in denen die Prioritäten der EU für Forschung und Innovation festgelegt sind.
Thema/Themen
Aufforderungen zur Einreichung von Vorschlägen sind nach Themen gegliedert. Ein Thema definiert einen bestimmten Bereich oder ein Gebiet, zu dem Vorschläge eingereicht werden können. Die Beschreibung eines Themas umfasst seinen spezifischen Umfang und die erwarteten Auswirkungen des finanzierten Projekts.
Aufforderungen zur Einreichung von Vorschlägen sind nach Themen gegliedert. Ein Thema definiert einen bestimmten Bereich oder ein Gebiet, zu dem Vorschläge eingereicht werden können. Die Beschreibung eines Themas umfasst seinen spezifischen Umfang und die erwarteten Auswirkungen des finanzierten Projekts.
Aufforderung zur Vorschlagseinreichung
Verfahren zur Aufforderung zur Einreichung von Projektvorschlägen mit dem Ziel, eine EU-Finanzierung zu erhalten.
Verfahren zur Aufforderung zur Einreichung von Projektvorschlägen mit dem Ziel, eine EU-Finanzierung zu erhalten.
FP7-PEOPLE-2011-IEF
Andere Projekte für diesen Aufruf anzeigen
Finanzierungsplan
Finanzierungsregelung (oder „Art der Maßnahme“) innerhalb eines Programms mit gemeinsamen Merkmalen. Sieht folgendes vor: den Umfang der finanzierten Maßnahmen, den Erstattungssatz, spezifische Bewertungskriterien für die Finanzierung und die Verwendung vereinfachter Kostenformen wie Pauschalbeträge.
Finanzierungsregelung (oder „Art der Maßnahme“) innerhalb eines Programms mit gemeinsamen Merkmalen. Sieht folgendes vor: den Umfang der finanzierten Maßnahmen, den Erstattungssatz, spezifische Bewertungskriterien für die Finanzierung und die Verwendung vereinfachter Kostenformen wie Pauschalbeträge.
Koordinator
SO17 1BJ SOUTHAMPTON
Vereinigtes Königreich
Die Gesamtkosten, die dieser Organisation durch die Beteiligung am Projekt entstanden sind, einschließlich der direkten und indirekten Kosten. Dieser Betrag ist Teil des Gesamtbudgets des Projekts.