Skip to main content
Aller à la page d’accueil de la Commission européenne (s’ouvre dans une nouvelle fenêtre)
français français
CORDIS - Résultats de la recherche de l’UE
CORDIS
Contenu archivé le 2024-06-18

Asymptotic Graph Properties

Objectif

Many parts of Graph Theory have witnessed a huge growth over the last years, partly because of their relation to Theoretical Computer Science and Statistical Physics. These connections arise because graphs can be used to model many diverse structures.

The focus of this proposal is on asymptotic results, i.e. the graphs under consideration are large. This often unveils patterns and connections which remain obscure when considering only small graphs.

It also allows for the use of powerful techniques such as probabilistic arguments, which have led to spectacular new developments. In particular, my aim is to make decisive progress on central problems in the following 4 areas:

(1) Factorizations: Factorizations of graphs can be viewed as partitions of the edges of a graph into simple regular structures. They have a rich history and arise in many different settings, such as edge-colouring problems, decomposition problems and in information theory. They also have applications to finding good tours for the famous Travelling salesman problem.

(2) Hamilton cycles: A Hamilton cycle is a cycle which contains all the vertices of the graph. One of the most fundamental problems in Graph Theory/Theoretical Computer Science is to find conditions which guarantee the existence of a Hamilton cycle in a graph.

(3) Embeddings of graphs: This is a natural (but difficult) continuation of the previous question where the aim is to embed more general structures than Hamilton cycles - there has been exciting progress here in recent years which has opened up new avenues.

(4) Resilience of graphs: In many cases, it is important to know whether a graph `strongly’ possesses some property, i.e. one cannot destroy the property by changing a few edges. The systematic study of this notion is a new and rapidly growing area.

I have developed new methods for deep and long-standing problems in these areas which will certainly lead to further applications elsewhere.

Champ scientifique (EuroSciVoc)

CORDIS classe les projets avec EuroSciVoc, une taxonomie multilingue des domaines scientifiques, grâce à un processus semi-automatique basé sur des techniques TLN. Voir: Le vocabulaire scientifique européen.

Vous devez vous identifier ou vous inscrire pour utiliser cette fonction

Programme(s)

Programmes de financement pluriannuels qui définissent les priorités de l’UE en matière de recherche et d’innovation.

Thème(s)

Les appels à propositions sont divisés en thèmes. Un thème définit un sujet ou un domaine spécifique dans le cadre duquel les candidats peuvent soumettre des propositions. La description d’un thème comprend sa portée spécifique et l’impact attendu du projet financé.

Appel à propositions

Procédure par laquelle les candidats sont invités à soumettre des propositions de projet en vue de bénéficier d’un financement de l’UE.

ERC-2012-StG_20111012
Voir d’autres projets de cet appel

Régime de financement

Régime de financement (ou «type d’action») à l’intérieur d’un programme présentant des caractéristiques communes. Le régime de financement précise le champ d’application de ce qui est financé, le taux de remboursement, les critères d’évaluation spécifiques pour bénéficier du financement et les formes simplifiées de couverture des coûts, telles que les montants forfaitaires.

ERC-SG - ERC Starting Grant

Institution d’accueil

THE UNIVERSITY OF BIRMINGHAM
Contribution de l’UE
€ 818 413,90
Adresse
Edgbaston
B15 2TT Birmingham
Royaume-Uni

Voir sur la carte

Région
West Midlands (England) West Midlands Birmingham
Type d’activité
Higher or Secondary Education Establishments
Liens
Coût total

Les coûts totaux encourus par l’organisation concernée pour participer au projet, y compris les coûts directs et indirects. Ce montant est un sous-ensemble du budget global du projet.

Aucune donnée

Bénéficiaires (1)

Mon livret 0 0