Objetivo
The monodromy conjecture, formulated in the seventies by the Japanese mathematician Igusa, is one of the most important open problems in the theory of singularities. It predicts a remarkable connection between certain geometric and arithmetic invariants of a polynomial f with integer coefficients. The conjecture describes in a precise way how the singularities of the complex hypersurface defined by the equation f = 0 influence the asymptotic behaviour of the number of solutions of the congruence f = 0 modulo powers of a prime. Some special cases have been solved, but the general case remains wide open. A proof of the conjecture would unveil profound relations between several branches of mathematics.
In the past years, we have developed a new interpretation of the monodromy conjecture, based on non-archimedean geometry, and we have generalized it to a larger framework. A significant success of this approach was our proof of the monodromy conjecture for one-parameter degenerations of abelian varieties. The aim of our proposal is to generalize this proof to degenerations of Calabi-Yau varieties, and to adapt the arguments to the local case of the conjecture (hypersurface singularities). Degenerations of Calabi-Yau varieties play a central role in Mirror Symmetry, a mathematical theory in full development that emerged from string theory. We will explore in detail the connections between the monodromy conjecture and recent breakthroughs in Mirror Symmetry (tropical constructions of degenerating Calabi-Yau varieties). We hope to achieve these goals by combining advanced tools from several research domains, in particular: motivic integration, non-archimedean geometry, Hodge theory, logarithmic geometry and tropical geometry. We are convinced that all these research domains will greatly benefit from the systematic exploration of their mutual interactions, and that the impact of our project will go far beyond the monodromy conjecture.
Ámbito científico (EuroSciVoc)
CORDIS clasifica los proyectos con EuroSciVoc, una taxonomía plurilingüe de ámbitos científicos, mediante un proceso semiautomático basado en técnicas de procesamiento del lenguaje natural. Véas: El vocabulario científico europeo..
CORDIS clasifica los proyectos con EuroSciVoc, una taxonomía plurilingüe de ámbitos científicos, mediante un proceso semiautomático basado en técnicas de procesamiento del lenguaje natural. Véas: El vocabulario científico europeo..
- ciencias naturales matemáticas matemáticas puras aritmética
- ciencias naturales ciencias físicas física teórica teoría de cuerdas
- ciencias naturales matemáticas matemáticas puras geometría
Para utilizar esta función, debe iniciar sesión o registrarse
Le pedimos disculpas, pero se ha producido un error inesperado durante la ejecución.
Necesita estar autentificado. Puede que su sesión haya finalizado.
Gracias por su comentario. En breve recibirá un correo electrónico para confirmar el envío. Si ha seleccionado que se le notifique sobre el estado del informe, también se le contactará cuando el estado del informe cambie.
Programa(s)
Programas de financiación plurianuales que definen las prioridades de la UE en materia de investigación e innovación.
Programas de financiación plurianuales que definen las prioridades de la UE en materia de investigación e innovación.
Tema(s)
Las convocatorias de propuestas se dividen en temas. Un tema define una materia o área específica para la que los solicitantes pueden presentar propuestas. La descripción de un tema comprende su alcance específico y la repercusión prevista del proyecto financiado.
Las convocatorias de propuestas se dividen en temas. Un tema define una materia o área específica para la que los solicitantes pueden presentar propuestas. La descripción de un tema comprende su alcance específico y la repercusión prevista del proyecto financiado.
Convocatoria de propuestas
Procedimiento para invitar a los solicitantes a presentar propuestas de proyectos con el objetivo de obtener financiación de la UE.
Procedimiento para invitar a los solicitantes a presentar propuestas de proyectos con el objetivo de obtener financiación de la UE.
ERC-2012-StG_20111012
Consulte otros proyectos de esta convocatoria
Régimen de financiación
Régimen de financiación (o «Tipo de acción») dentro de un programa con características comunes. Especifica: el alcance de lo que se financia; el porcentaje de reembolso; los criterios específicos de evaluación para optar a la financiación; y el uso de formas simplificadas de costes como los importes a tanto alzado.
Régimen de financiación (o «Tipo de acción») dentro de un programa con características comunes. Especifica: el alcance de lo que se financia; el porcentaje de reembolso; los criterios específicos de evaluación para optar a la financiación; y el uso de formas simplificadas de costes como los importes a tanto alzado.
Institución de acogida
SW7 2AZ London
Reino Unido
Los costes totales en que ha incurrido esta organización para participar en el proyecto, incluidos los costes directos e indirectos. Este importe es un subconjunto del presupuesto total del proyecto.