Skip to main content
European Commission logo print header

Template assisted assembly of METAmaterials using MECHanical instabilities


The concept of optical metamaterials has opened completely new perspectives for manipulation of electromagnetic radiation. In contrast to homogenous materials, metamaterials enable qualitatively new features like negative index of refraction. These give rise to new fundamental physical effects, but as well to completely new applications like super-lensing or loss-free molding of the flow of light. Still, practical demonstrations of metamaterials for the near-IR and visible frequency range are scarce and limited to microscopic sizes. This is due to the fact that their assembly relies on complex and resource-consuming lithographic processes, which cannot be up-scaled well.
This proposal aims at establishing a radically different assembly route for metamaterials, which is up-scalable to macroscopic areas and greatly reduces processing effort.
The methodology relies on the synthesis of tailored colloidal building blocks, so-called meta-atoms, which combine metals and insulators in a well defined geometry. These meta-atoms will subsequently be assembled into hierarchical structures using templates fabricated by controlled wrinkling of elastomeric substrates. The use of mechanical instabilities in template formation eliminates lithographic steps in materials assembly. Structures and assembly processes will be optimized based on theory and simulation and morphological and optical properties will be investigated on meta-atom and metamaterials level.
We target negative-index metamaterials, metamaterials for transformation optics and a new class of elastically deformable metamaterials. Upscaling of metamaterial formation on macroscopic dimensions will become feasible and the materials will become available for a broader academic and industrial community, making them in the mid-term available for applications in energy (light harvesting, light concentrators), information (manipulation of light flow) and medical technology (sensing).

Aufforderung zur Vorschlagseinreichung

Andere Projekte für diesen Aufruf anzeigen



Hohe strasse 6
01069 Dresden

Auf der Karte ansehen

Sachsen Dresden Dresden, Kreisfreie Stadt
Research Organisations
Andreas Fery (Prof.)
Kontakt Verwaltung
Sandra Martinka (Mrs.)
Keine Daten

Begünstigte (2)