Skip to main content
Vai all'homepage della Commissione europea (si apre in una nuova finestra)
italiano italiano
CORDIS - Risultati della ricerca dell’UE
CORDIS
Contenuto archiviato il 2024-05-28

Kähler-Einstein metrics, random point processes and variational principles

Obiettivo

In broad terms the aim of this proposal is to introduce a new probabilistic approach to the study of Kähler-Einstein (K-E) metrics on complex manifolds. A precise procedure, based on a blend of Statistical Mechanics, Pluripotential theory and Kähler Geometry. will be used to show that

• when a K-E metric exists on a complex manifold X it can be obtained from the “large
N limit” of certain canonical random point processes on X with N particles.

The canonical point processes are directly defined in terms of algebro-geometric data and the thrust of this approach is thus that it gives a new link between algebraic geometry on one and hand and complex differential (Kähler) geometry on the other. A major motivation for this project comes from the fundamental Yau-Tian-Donaldson conjecture in Kähler geometry, which aims at characterizing the obstructions to the existence of a K-E metric on a Fano manifold in terms of a suitable notion of algebro-geometric “stability”, notably K-Stability. In this project a new “probabilistic/statistical mechanical” version of stability will be introduced referred to as Gibbs stability, which also has an interesting purely algebro-geometric definition in the spirit of the Minimal Model Program in current algebraic geometry and another specific aim of this project is to prove or at least make substantial progress towards proving,

• There is a (unique) K-E metric on a Fano manifold X precisely when X is asymptotically Gibbs stable

The canonical random point processes will be defined as certain “beta-deformations” of determinantal point processes and share certain properties with the ones appearing in Random Matrix Theory and in the study of quantum chaos and zeroes of random polynomials (and random holomorphic sections) But a crucial new feature here is that the processes are independent of any back-ground data, such as a potential or a metric.

Campo scientifico (EuroSciVoc)

CORDIS classifica i progetti con EuroSciVoc, una tassonomia multilingue dei campi scientifici, attraverso un processo semi-automatico basato su tecniche NLP. Cfr.: https://op.europa.eu/it/web/eu-vocabularies/euroscivoc.

È necessario effettuare l’accesso o registrarsi per utilizzare questa funzione

Argomento(i)

Gli inviti a presentare proposte sono suddivisi per argomenti. Un argomento definisce un’area o un tema specifico per il quale i candidati possono presentare proposte. La descrizione di un argomento comprende il suo ambito specifico e l’impatto previsto del progetto finanziato.

Invito a presentare proposte

Procedura per invitare i candidati a presentare proposte di progetti, con l’obiettivo di ricevere finanziamenti dall’UE.

ERC-2012-StG_20111012
Vedi altri progetti per questo bando

Meccanismo di finanziamento

Meccanismo di finanziamento (o «Tipo di azione») all’interno di un programma con caratteristiche comuni. Specifica: l’ambito di ciò che viene finanziato; il tasso di rimborso; i criteri di valutazione specifici per qualificarsi per il finanziamento; l’uso di forme semplificate di costi come gli importi forfettari.

ERC-SG - ERC Starting Grant

Istituzione ospitante

CHALMERS TEKNISKA HOGSKOLA AB
Contributo UE
€ 1 200 000,00
Indirizzo
-
412 96 Goteborg
Svezia

Mostra sulla mappa

Regione
Södra Sverige Västsverige Västra Götalands län
Tipo di attività
Higher or Secondary Education Establishments
Collegamenti
Costo totale

I costi totali sostenuti dall’organizzazione per partecipare al progetto, compresi i costi diretti e indiretti. Questo importo è un sottoinsieme del bilancio complessivo del progetto.

Nessun dato

Beneficiari (1)

Il mio fascicolo 0 0