Skip to main content
Aller à la page d’accueil de la Commission européenne (s’ouvre dans une nouvelle fenêtre)
français français
CORDIS - Résultats de la recherche de l’UE
CORDIS
Contenu archivé le 2024-05-28

Noncommutative geometry and quantum groups

Objectif

"The goal of the project is to make fundamental contributions to the study of quantum groups in the operator algebraic setting. Two main directions it aims to explore are noncommutative differential geometry and boundary theory of quantum random walks.
The idea behind noncommutative geometry is to bring geometric insight to the study of noncommutative algebras and to analyze spaces which are beyond the reach via classical means. It has been particularly successful in the latter, for example, in the study of the spaces of leaves of foliations. Quantum groups supply plenty of examples of noncommutative algebras, but the question how they fit into noncommutative geometry remains complicated. A successful union of these two areas is important for testing ideas of noncommutative geometry and for its development in new directions. One of the main goals of the project is to use the momentum created by our recent work in the area in order to further expand the boundaries of our understanding. Specifically, we are going to study such problems as the local index formula, equivariance of Dirac operators with respect to the dual group action (with an eye towards the Baum-Connes conjecture for discrete quantum groups), construction of Dirac operators on quantum homogeneous spaces, structure of quantized C*-algebras of continuous functions, computation of dual cohomology of compact quantum groups.
The boundary theory of quantum random walks was created around ten years ago. In the recent years there has been a lot of progress on the “measure-theoretic” side of the theory, while the questions largely remain open on the “topological” side. A significant progress in this area can have a great influence on understanding of quantum groups, construction of new examples and development of quantum probability. The main problems we are going to study are boundary convergence of quantum random walks and computation of Martin boundaries."

Champ scientifique (EuroSciVoc)

CORDIS classe les projets avec EuroSciVoc, une taxonomie multilingue des domaines scientifiques, grâce à un processus semi-automatique basé sur des techniques TLN. Voir: Le vocabulaire scientifique européen.

Vous devez vous identifier ou vous inscrire pour utiliser cette fonction

Programme(s)

Programmes de financement pluriannuels qui définissent les priorités de l’UE en matière de recherche et d’innovation.

Thème(s)

Les appels à propositions sont divisés en thèmes. Un thème définit un sujet ou un domaine spécifique dans le cadre duquel les candidats peuvent soumettre des propositions. La description d’un thème comprend sa portée spécifique et l’impact attendu du projet financé.

Appel à propositions

Procédure par laquelle les candidats sont invités à soumettre des propositions de projet en vue de bénéficier d’un financement de l’UE.

ERC-2012-StG_20111012
Voir d’autres projets de cet appel

Régime de financement

Régime de financement (ou «type d’action») à l’intérieur d’un programme présentant des caractéristiques communes. Le régime de financement précise le champ d’application de ce qui est financé, le taux de remboursement, les critères d’évaluation spécifiques pour bénéficier du financement et les formes simplifiées de couverture des coûts, telles que les montants forfaitaires.

ERC-SG - ERC Starting Grant

Institution d’accueil

UNIVERSITETET I OSLO
Contribution de l’UE
€ 1 144 930,00
Coût total

Les coûts totaux encourus par l’organisation concernée pour participer au projet, y compris les coûts directs et indirects. Ce montant est un sous-ensemble du budget global du projet.

Aucune donnée

Bénéficiaires (1)

Mon livret 0 0