European Commission logo
italiano italiano
CORDIS - Risultati della ricerca dell’UE
Contenuto archiviato il 2024-06-18

Graphene doping and texturing in efficient electrodes for organic solar cells


Organic semiconductor solar cells are a promising route to scalable, economically viable, energy conversion technologies due to the potential for development of low-cost, flexible, large-area cells and modules.
In order to achieve the goal of obtaining efficient bulk heterojunction solar cells (BHJ-SCs), graphene electrodes have been recently proposed as a promising candidate. Research is however at the very beginning, so that if graphene will manage to accomplish this task still has to be proved.
In particular, many questions remains open like the degree of interaction of graphene with the polymeric layer, which could degrade the outstanding graphene electron conductivity, as well as the graphene/polymer electron affinity, which plays an important role in the overalls solar cell efficiency. Furthermore, up to now no analysis on light management improvements induced by structuring graphene as photonic crystal for light trapping in BHJ-SC has been reported.
The GO-NEXTS project, will focus its attention on new kind of electrodes based on doped, textured (ie 3D) graphene electrodes, in order to increase the overall efficiency and performance of bulk heterojunction solar cells. To our knowledge, this represents the first proposal to enhance light trapping in a solar cell by structuring one or more graphene contact electrode(s) to act as photonic crystal(s).
The project will leverage the combination of two different fabrication processes, and in particular the doping of the graphene, to obtain semi-transparent electrodes as well as the texturing of the electrodes. This approach, which has never been proposed before, represents a high-risk, high-impact approach. If successful, it should lead to improvements in solar cell efficiency by up to 14%. Furthermore, all the technologies proposed are suitable for large area realization paving the way for a scalable, economic fabrication technologies on low-cost flexible substrates.

Invito a presentare proposte

Vedi altri progetti per questo bando

Meccanismo di finanziamento

CP - Collaborative project (generic)


Contributo UE
€ 435 490,00
00133 Roma

Mostra sulla mappa

Centro (IT) Lazio Roma
Tipo di attività
Higher or Secondary Education Establishments
Contatto amministrativo
Renato Lauro (Prof.)
Costo totale
Nessun dato

Partecipanti (4)