Skip to main content
European Commission logo print header

MicrOwave Spintronics as an AlternatIve Path to Components and Systems for Telecommunications, Storage and Security Applications

Description du projet


Very advanced nanoelectronic components: design, engineering, technology and manufacturability
Process (mix, modulate, synchronise) and detect microwave frequencies based on innovative spin transfer devices.

The overarching objective of the MOSAIC project is to bring the device level knowledge acquired in the past years by the partners towards systems as a first crucial step towards industrialization, warranting the leading position not only of European research but also of European industry in microwave spintronics. Innovative components and systems based on nano-engineered semiconductor, magnetic or insulating materials will be the driving force for the micro- and nanoelectronics industry in the 21st century. For telecommunications systems, but also for data storage and automation, control and security applications, alternative More than Moore paths to systems are provided by nano-scale microwave spintronics components due to firstly their unique spin polarized transport properties that appear only at nanoscale dimensions (<100nm lateral, and 2-5 nm vertical), secondly their unique (multifunctional) microwave properties including signal generation, processing and detection and thirdly their compatibility with CMOS technology. Going beyond previous fundamental research on spintronics devices, the MOSAIC project will target technological breakthroughs not only to generate, but also to process (mix, modulate, synchronise) and to detect microwave frequencies. Based on innovative spin transfer devices, four discrete systems will be developed that address bottlenecks of current technologies. These are a) Wireless Telecommunications 1: Ultrawideband frequency synthesis provided by spintronics microwave components with novel circuit design on CMOS for realization of an adapted phase locked loop; b) Wireless Telecommunications 2: Ultrafast frequency detection using frequency discriminating level detection; c) Data storage: Novel dynamic readout schemes for detecting frequency shifts implemented for realization of high data rate read heads; and d) Automation control & security: Broad bandwidth, high slew rate proximity sensor based on frequency generation and modulation capabilities.

Innovative components and systems based on nano-engineered semiconductor, magnetic or insulating materials will be the driving force for the micro- and nano-electronics industry of the 21st century. For telecommunications systems, but also for data storage and Automation, Control and Security applications, alternative More than MOORE paths to systems are provided by nano-scale microwave spintronics components due to (i) their unique spin polarized transport properties that appear only at nanoscale dimensions (<100nm lateral, and 2-5 nm vertical), (ii) their unique (multifunctional) microwave properties including signal generation, processing and detection and (iii) their compatibility with CMOS technology. Going beyond previous fundamental research on spintronics devices, this project will target technological breakthroughs not only to generate, but also to process (mix, modulate, synchronise) and to detect microwave frequencies. Based on innovative spin transfer devices, four discrete systems will be developed that address bottlenecks of current technologies: A Wireless Telecommunications 1: Ultrawideband frequency synthesis provided by spintronics microwave components with novel circuit design on CMOS for realization of an adapted phase locked loop; B Wireless Telecommunications 2: Ultrafast frequency detection using frequency discriminating level detection; C Wireless Telecommunications 3: FSK based wireless communication; D Automation control & security : Broad bandwidth, high slew rate proximity sensor based on frequency generation and modulation capabilities.The broader objective is to bring the device level knowledge acquired in the past years by the partners towards systems as a first crucial step towards industrialization, warranting the leading position not only of European research but also of European industry in microwave spintronics.

Appel à propositions

FP7-ICT-2011-8
Voir d’autres projets de cet appel

Coordinateur

COMMISSARIAT A L ENERGIE ATOMIQUE ET AUX ENERGIES ALTERNATIVES
Contribution de l’UE
€ 1 346 411,00
Adresse
RUE LEBLANC 25
75015 PARIS 15
France

Voir sur la carte

Région
Ile-de-France Ile-de-France Paris
Type d’activité
Research Organisations
Contact administratif
Sylvain Roudil (Mr.)
Liens
Coût total
Aucune donnée

Participants (8)