Objective
Cells release neurotransmitters, hormones and other compounds stored in secretory vesicles by a process called exocytosis. In this process, the molecules are released upon stimulation by a nanomachine forming a fusion pore that connects the vesicular lumen to the extracellular space. Similar fusion events are also essential for intracellular transport mechanisms and virus-induced fusion.
Here I propose a multidisciplinary approach using highly innovative techniques to determine the nanomechanical mechanism of fusion pore formation. The proposal is based on the hypothesis that the vesicle fusion nanomachine is formed by the mechanical interactions of the SNARE proteins synaptobrevin, syntaxin, and SNAP-25 and that the fusion pore is opened by intra-membrane movement of the transmembrane domains. I will combine fluorescence resonance energy transfer microscopy with detection of individual fusion events using microfabricated electrochemical detector arrays to demonstrate that fusion pore formation is produced directly by a conformational change in the SNARE complex. I will estimate the energies that are needed to pull the synaptobrevin C terminus into the hydrophobic membrane core and the forces that are generated by the SNARE complex for wild type and a set of specific mutations using molecular dynamics simulations. I will determine how these energies and forces relate to inhibition and facilitation of experimentally observed fusion, performing patch clamp capacitance measurements of vesicle fusion in chromaffin cells expressing wild type and mutated SNARE proteins. Based on these results I will develop a detailed picture of the molecular steps, the energies, and the forces exerted by the molecular nanomachine of fusion pore formation and will ultimately generate a molecular movie of this fundamental biological process. Understanding cellular and viral fusion events will likely lead to novel treatments from spasms and neurodegeneration to cancer and infectious disease
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences biological sciences neurobiology
- medical and health sciences health sciences infectious diseases
- natural sciences biological sciences biochemistry biomolecules proteins
- natural sciences physical sciences optics microscopy
- natural sciences biological sciences genetics mutation
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
ERC-2012-ADG_20120314
See other projects for this call
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Host institution
80539 Munchen
Germany
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.