Skip to main content
European Commission logo
español español
CORDIS - Resultados de investigaciones de la UE
CORDIS
Contenido archivado el 2024-05-30

The lysine-specific demethylase1 (LSD1) in physiology and pathology

Objetivo

"The identification of the first histone demethylase lysine-specific demethylase 1 (LSD1) established not only the concept of reversible histone methylation in epigenetic regulation but also translated this fundamentally novel biological observation into understanding the molecular mechanisms regulation stemness, differentiation, proliferation, and pathological growth. To unravel in an unbiased and comprehensive manner the biological function of LSD1 in physiology and pathology, we developed LSD1-deficient and LSD1-transgenic mouse models. LSD1-transgenic animals develop prostate tumours demonstrating that increased expression of LSD1 suffices for oncogenic growth in vivo. In addition, LSD1-transgenic animals exhibit a metabolic shift towards overt obesity in adulthood. LSD1-deficiency causes early embryonic lethality around day 7.5 of development. However, deletion of LSD1 is not essential for the development of the embryo proper until the onset of gastrulation, suggesting that the early embryonic lethality is caused by trophoblast defects. Indeed, our data demonstrate that LSD1 is crucial for maintaining trophoblast stem cells in their niche and required for the specification of trophoblast stem cell fate during initial steps of differentiation. To identify the underlying mechanisms that allow LSD1 to control a wide range of biological systems such as trophoblast stem cell fate in the early embryo, obesity, and prostate tumourigenesis in the adult, we propose to a) identify LSD1-associated protein complexes and b) LSD1 target genes establishing these phenotypes in the mouse. In addition, we shall uncover c) signalling pathways that modify LSD1 in these phenotypes allowing us to explore the therapeutic potential of targeting these signalling pathways."

Convocatoria de propuestas

ERC-2012-ADG_20120314
Consulte otros proyectos de esta convocatoria

Régimen de financiación

ERC-AG - ERC Advanced Grant

Institución de acogida

UNIVERSITAETSKLINIKUM FREIBURG
Aportación de la UE
€ 2 488 800,00
Dirección
HUGSTETTER STRASSE 49
79106 Freiburg
Alemania

Ver en el mapa

Región
Baden-Württemberg Freiburg Freiburg im Breisgau, Stadtkreis
Tipo de actividad
Higher or Secondary Education Establishments
Contacto administrativo
Maren Mihlan (Mrs.)
Investigador principal
Roland Schuele (Prof.)
Enlaces
Coste total
Sin datos

Beneficiarios (1)