Skip to main content
Aller à la page d’accueil de la Commission européenne (s’ouvre dans une nouvelle fenêtre)
français français
CORDIS - Résultats de la recherche de l’UE
CORDIS
Contenu archivé le 2024-06-18

Causal Statistical Inference from High-Dimensional Data

Objectif

"Statistical causal structure learning tackles the following problem: given iid observational data from a joint distribution, we estimate the underlying causal graph. This graph contains a directed arrow from each variable to its direct effects and is assumed to be acyclic. We propose to develop methods and mathematical theory for high-dimensional applications, where the number of variables is much larger than the number of samples.

Independence-based methods like the PC algorithm can discover causal structures only up to Markov equivalence classes, that is some arrows remain undirected. And their consistency relies on strong faithfulness, which has been shown to be a restrictive condition. We propose to exploit structural equation models (SEMs) instead. They assume each variable to be a function of its direct causes and some noise variable. For certain restrictions (e.g. non-linear functions and additive noise) we obtain full identifiability; that is, given an observational distribution, we can recover the underlying causal graph, even without requiring faithfulness. On low-dimensional data sets, SEM-based methods already outperform competing methods like PC. However, they are not applicable to high-dimensional problems yet. One of the main goals of this research proposal is to develop new SEM-based methodology for high-dimensional applications and provide a theoretical analysis.

In many applications, data are often collected under different environmental conditions. It is expected that the causal dependencies of a plant's genes, for example, behave differently under stress conditions like drought. Modeling these mechanism changes and exploiting them for causal structure learning is the second main goal of the research proposal. To the best of our knowledge, there is currently no methodology available for these tasks.

We will apply the developed methodology to biological systems. The research is closely linked to the interdisciplinary project ""InfectX""."

Programme(s)

Programmes de financement pluriannuels qui définissent les priorités de l’UE en matière de recherche et d’innovation.

Thème(s)

Les appels à propositions sont divisés en thèmes. Un thème définit un sujet ou un domaine spécifique dans le cadre duquel les candidats peuvent soumettre des propositions. La description d’un thème comprend sa portée spécifique et l’impact attendu du projet financé.

Appel à propositions

Procédure par laquelle les candidats sont invités à soumettre des propositions de projet en vue de bénéficier d’un financement de l’UE.

FP7-PEOPLE-2012-IEF
Voir d’autres projets de cet appel

Régime de financement

Régime de financement (ou «type d’action») à l’intérieur d’un programme présentant des caractéristiques communes. Le régime de financement précise le champ d’application de ce qui est financé, le taux de remboursement, les critères d’évaluation spécifiques pour bénéficier du financement et les formes simplifiées de couverture des coûts, telles que les montants forfaitaires.

MC-IEF - Intra-European Fellowships (IEF)

Coordinateur

EIDGENOESSISCHE TECHNISCHE HOCHSCHULE ZUERICH
Contribution de l’UE
€ 184 709,40
Adresse
Raemistrasse 101
8092 Zuerich
Suisse

Voir sur la carte

Région
Schweiz/Suisse/Svizzera Zürich Zürich
Type d’activité
Higher or Secondary Education Establishments
Liens
Coût total

Les coûts totaux encourus par l’organisation concernée pour participer au projet, y compris les coûts directs et indirects. Ce montant est un sous-ensemble du budget global du projet.

Aucune donnée
Mon livret 0 0