Skip to main content
Weiter zur Homepage der Europäischen Kommission (öffnet in neuem Fenster)
Deutsch Deutsch
CORDIS - Forschungsergebnisse der EU
CORDIS
Inhalt archiviert am 2024-06-18

Causal Statistical Inference from High-Dimensional Data

Ziel

"Statistical causal structure learning tackles the following problem: given iid observational data from a joint distribution, we estimate the underlying causal graph. This graph contains a directed arrow from each variable to its direct effects and is assumed to be acyclic. We propose to develop methods and mathematical theory for high-dimensional applications, where the number of variables is much larger than the number of samples.

Independence-based methods like the PC algorithm can discover causal structures only up to Markov equivalence classes, that is some arrows remain undirected. And their consistency relies on strong faithfulness, which has been shown to be a restrictive condition. We propose to exploit structural equation models (SEMs) instead. They assume each variable to be a function of its direct causes and some noise variable. For certain restrictions (e.g. non-linear functions and additive noise) we obtain full identifiability; that is, given an observational distribution, we can recover the underlying causal graph, even without requiring faithfulness. On low-dimensional data sets, SEM-based methods already outperform competing methods like PC. However, they are not applicable to high-dimensional problems yet. One of the main goals of this research proposal is to develop new SEM-based methodology for high-dimensional applications and provide a theoretical analysis.

In many applications, data are often collected under different environmental conditions. It is expected that the causal dependencies of a plant's genes, for example, behave differently under stress conditions like drought. Modeling these mechanism changes and exploiting them for causal structure learning is the second main goal of the research proposal. To the best of our knowledge, there is currently no methodology available for these tasks.

We will apply the developed methodology to biological systems. The research is closely linked to the interdisciplinary project ""InfectX""."

Programm/Programme

Mehrjährige Finanzierungsprogramme, in denen die Prioritäten der EU für Forschung und Innovation festgelegt sind.

Thema/Themen

Aufforderungen zur Einreichung von Vorschlägen sind nach Themen gegliedert. Ein Thema definiert einen bestimmten Bereich oder ein Gebiet, zu dem Vorschläge eingereicht werden können. Die Beschreibung eines Themas umfasst seinen spezifischen Umfang und die erwarteten Auswirkungen des finanzierten Projekts.

Aufforderung zur Vorschlagseinreichung

Verfahren zur Aufforderung zur Einreichung von Projektvorschlägen mit dem Ziel, eine EU-Finanzierung zu erhalten.

FP7-PEOPLE-2012-IEF
Andere Projekte für diesen Aufruf anzeigen

Finanzierungsplan

Finanzierungsregelung (oder „Art der Maßnahme“) innerhalb eines Programms mit gemeinsamen Merkmalen. Sieht folgendes vor: den Umfang der finanzierten Maßnahmen, den Erstattungssatz, spezifische Bewertungskriterien für die Finanzierung und die Verwendung vereinfachter Kostenformen wie Pauschalbeträge.

MC-IEF - Intra-European Fellowships (IEF)

Koordinator

EIDGENOESSISCHE TECHNISCHE HOCHSCHULE ZUERICH
EU-Beitrag
€ 184 709,40
Adresse
Raemistrasse 101
8092 Zuerich
Schweiz

Auf der Karte ansehen

Region
Schweiz/Suisse/Svizzera Zürich Zürich
Aktivitätstyp
Higher or Secondary Education Establishments
Links
Gesamtkosten

Die Gesamtkosten, die dieser Organisation durch die Beteiligung am Projekt entstanden sind, einschließlich der direkten und indirekten Kosten. Dieser Betrag ist Teil des Gesamtbudgets des Projekts.

Keine Daten
Mein Booklet 0 0