Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-06-18

The action mechanism of human antimicrobial peptide dermcidin

Objective

Antimicrobial peptides (AMPs) have great potential as a new generation of antibiotics, but their function mechanisms are very elusive which hinders the design and application of this kind of new antibiotics in medicine or therapy. Different function models have been proposed, one of which is the oligomerization of AMPs and pore formation on the bacterial membranes. However, there are no atomic structures of AMP oligomers published and therefore no atomic details exist about how they act on membranes. Very recently, the first crystal structure of one AMP oligomer, the dermcidin oligomer, has been obtained by X-ray crystallography by one of our collaborators. We have performed preliminary molecular dynamics (MD) simulations on this structure and found some very interesting properties of the oligomer and some implications of their action mechanism. Briefly, it acts as a water and ion channel on the membrane with unique transport properties. Following the discovery of this new structure and the preliminary simulation results, in this proposal, we plan to perform further MD simulations to study its detailed action mechanism on membranes. We will perform potential of mean force calculations and the new computational electrophysiology simulations to quantify the ion selectivity, the permeation pathway selectivity and the preference orientation of the dermcidin channel on membranes. The relation between the channel orientation and its conductance will be studied. We will investigate the effect of membrane composition on the insertion and conduction properties of the dermcidin oligomer. All of these studies would be highly related to its function in vivo. The proposed project here can assist people to understand the action mechanisms of dermcidin and the AMP family, which will be of great help for the future AMP-derived antibiotics design.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

FP7-PEOPLE-2012-IEF
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

MC-IEF - Intra-European Fellowships (IEF)

Coordinator

THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORD
EU contribution
€ 309 235,20
Address
WELLINGTON SQUARE UNIVERSITY OFFICES
OX1 2JD Oxford
United Kingdom

See on map

Region
South East (England) Berkshire, Buckinghamshire and Oxfordshire Oxfordshire
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data
My booklet 0 0