Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-06-18

Molecular architecture of a prototypical trans-synaptic complex: GluD2-Cerebellin1-Neurexin1β

Objective

Chemical synapses in the central nervous system (CNS) employ a multitude of neuronal cell-surface receptors, adhesion proteins, secreted effector molecules, and proteoglycans. Within such vast network of interactions, synapse-spanning protein complexes mediate cell-cell adhesion, align pre- and postsynaptic specializations and exert bidirectional signaling, inducing pre- and postsynaptic differentiation. This proposal focuses on the “Glutamate receptor D2–Cerebellin1–Neurexin1β” trans-synaptic complex, a key component of the excitatory parallel fiber - Purkinje cell (PF-PC) synapse in the cerebellum. This tripartite interaction is essential for bidirectional synaptogenesis, and its specific disruption leads to impairment of cognition and motor coordination. However, the structure of this complex and its implications for synapse organization and modulation of neurotransmission remain unknown.

The goal of this proposal is to elucidate the molecular architecture of the GluD2–Cerebellin1–Neurexin1β protein complex, and understand its functional implications. I will use X-ray crystallography to obtain high-resolution structural information on binary and ternary complexes between the soluble, extracellular GluD2, Cerebellin1 and Neurexin1β regions. A range of biophysical methods combined with site-directed mutagenesis will be applied to dissect complex formation with respect to affinity, kinetics, stoichiometry and contribution of functional modules. In parallel, using cryo-electron tomography I aim to visualize and reconstruct the higher-order architecture of GluD2–Cerebellin1, and ultimately the trans-synaptic triad, in model cellular membranes. This integrated approach should reveal general principles of supra-molecular organization and function at neuronal synapses, as structurally related molecules are broadly present within the CNS. Understanding synaptic functions in molecular terms will produce enduring paradigms in basic neuroscience and benefit human health.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

FP7-PEOPLE-2012-IEF
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

MC-IEF - Intra-European Fellowships (IEF)

Coordinator

THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORD
EU contribution
€ 221 606,40
Address
WELLINGTON SQUARE UNIVERSITY OFFICES
OX1 2JD Oxford
United Kingdom

See on map

Region
South East (England) Berkshire, Buckinghamshire and Oxfordshire Oxfordshire
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data
My booklet 0 0