Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-06-18

Neurovascular coupling in stroke - the brain microvasculature as a target for prevention of ischemic brain damage

Objective

What happens in the small brain blood vessels and surrounding neurons and glia cells (the neurovascular unit) after a stroke? Can we therapeutically prevent this pathology to normalise blood flow regulation and improve outcome after stroke? These questions are at the heart of my proposal.
Current treatment options for stroke - the leading cause of long-term disabilities in Europe - are remarkably limited. Numerous failed clinical trials suggest that merely neuroprotective drugs are insufficient. We must understand and treat pathological changes in the neurovascular unit as a whole.
The study of molecular mechanisms governing the interaction between brain arterioles, neurons and glia cells (neurovascular coupling) has been halted by the lack of appropriate techniques. However, in recent years novel techniques have been developed, and an exciting research field is emerging – with the Nelson lab at University of Vermont as a front-runner. However, the novel techniques and knowledge have not yet been exploited to study neurovascular pathology in stroke – the main objective of my proposal.
I will use advanced techniques in the Nelson lab to investigate alterations in a) neurovascular coupling in vivo, b) contractile function of small brain arterioles and c) intracellular calcium signals in these vessels and surrounding astrocytes after ischemic stroke in mice. I will then transfer key techniques to the return lab and use them together with quantitative mass spectrometry (proteomics) to test whether inhibition of a central intracellular signalling pathway activated in brain vessels after stroke can prevent pathology in the neurovascular unit and improve outcome.
This will provide novel information on neurovascular coupling deficits in stroke and possible therapeutic targets. It will increase European excellence in neurovascular coupling by transferring frontier technical and scientific skills to Europe and fostering novel transatlantic collaborations.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

FP7-PEOPLE-2012-IOF
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

MC-IOF - International Outgoing Fellowships (IOF)

Coordinator

REGION HOVEDSTADEN
EU contribution
€ 204 930,60
Address
KONGENS VAENGE 2
3400 Hillerod
Denmark

See on map

Region
Danmark Hovedstaden Københavns omegn
Activity type
Public bodies (excluding Research Organisations and Secondary or Higher Education Establishments)
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data
My booklet 0 0