Skip to main content
European Commission logo
English English
CORDIS - EU research results
CORDIS
CORDIS Web 30th anniversary CORDIS Web 30th anniversary
Content archived on 2024-06-18

Controlled Assembly and Stabilisation of Functionalised Colloids in Nematic Liquid Crystals

Objective

"Herein I present a new approach towards 2D colloidal crystals with selectively created point and line defects. This project reaches beyond the state of the art in the field of colloidal crystals for photonic applications. However, in order to exploit these materials for photonic application point and line defects have to be created to guide light through the material. So far no bottom-up approaches to selectively created defects has been reported; in fact, despite the preparation of colloidal crystals usually involves self-assembly techniques the generation of point and line defects has been reached only using top-down techniques (i.e. photolithography, photochemical etching, focussed ion beam etching, etc.).
The assembly will be carried out in reactive (polymerisable) liquid crystalline matrix by means of laser tweezers; UV-curing will cause the polymerisation of the reactive liquid crystal molecules yielding an aligned liquid crystalline network which will embed the assembly, stabilising it. Organic chemistry synthesis will be applied to generate photonitiator and polymerisable units to be installed on the surface of the colloids. The assembly technique reported by Prof. Muševič will ensure a one-by-one construction of the colloidal crystals. Using this technique particles with a lower interaction with the generated polymeric network can be incorporated in specific position of the assembly. These particles can subsequently be removed by means of laser tweezers, generating point and line defects in the 2D colloidal crystal.
The interdisciplinarity of the proposal which combines Organic Chemistry with Experimental Physics is one of the points of strength of the project. Positive outcomes will represent a leap forward for photonic and nanotechnology industry in the ERA. The host offers great opportunities to collaborate with industry allowing the EU to increase its level of competition with other producers of this kind of photonic materials."

Call for proposal

FP7-PEOPLE-2012-IEF
See other projects for this call

Coordinator

INSTITUT JOZEF STEFAN
EU contribution
€ 154 137,60
Address
Jamova 39
1000 Ljubljana
Slovenia

See on map

Region
Slovenija Zahodna Slovenija Osrednjeslovenska
Activity type
Research Organisations
Administrative Contact
Jadran Lenarcic (Prof.)
Links
Total cost
No data