Objective
Fiber-reinforced polymers (FRP's), stronger per unit of weight than steel or aluminium, are highly demanded for high-performance applications. The use of FRP's in aerospace structures can lead to a significant reduction of maintenance costs, carbon imprint by fuel consumptions, COx and NOx emissions, etc. This is the reason why the last civil Airbus aircraft contains up to 52% in weight of composite materials and the Boeing 787 Dreamliner claims to be the first aircraft with a fully composite fuselage. However, composites materials presents several drawbacks that need to be overcome to fully take advantage of their excellent mechanical properties. From a mechanical perspective, aerospace composites are made of carbon fiber “plies” which are held together by a polymer. This polymer can crack easily, which results in the delamination of the plies and the failure of the structure if it is not detected on time. It is also required for aerospace materials to be protected from common environmental occurrences, such as lightning strikes, electromagnetic interferences, electrostatic discharge, etc. Various methods are used to address these concerns, such as the use of metallic meshes or foils. However, these meshes/screens are difficult to handle for both production and repairs, and increase significantly the overall weight of the aircraft. Here, I propose to develop a novel nano-architecture to enhance the mechanical and electrical properties of the composite in the through-the-thickness direction. This nano-architecture will also act as a sensing system, enabling damage detection and localization by resistive-heating based non-destructive evaluation. In summary, the nano-engineered composite proposed here is an intrinsically multifunctional material, with expected over the state-of-the-art mechanical and multifunctional properties.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- natural sciences physical sciences electromagnetism and electronics electromagnetism
- engineering and technology materials engineering fibers
- engineering and technology mechanical engineering vehicle engineering aerospace engineering aircraft
- natural sciences chemical sciences polymer sciences
- engineering and technology materials engineering fibers carbon fibers
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
FP7-PEOPLE-2012-CIG
See other projects for this call
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
MC-CIG - Support for training and career development of researcher (CIG)
Coordinator
28906 Getafe
Spain
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.