Skip to main content
Ir a la página de inicio de la Comisión Europea (se abrirá en una nueva ventana)
español español
CORDIS - Resultados de investigaciones de la UE
CORDIS
Contenido archivado el 2024-06-18

Information-optimal machine learning

Objetivo

The statistical and computational theory of learning is one of the prime achievements of computer science and engineering. This is evident both in terms of mathematical elegance of capturing intuitive notions rigorously as well as in terms of practical applicability: machine learning has effectively reshaped the way we use information.
In this proposal we tackle the very basic notions of learning. Learning theory traditional focuses on statistics and computation. We propose to add information to the characterization of learning: namely the research question we address is: how much information is necessary to learn a certain concept efficiently?
The crucial difference from classical learning theory is that traditionally statistical complexity was measured in terms of the number of examples needed to learn a concept. Our question is more finely grained: what if we are allowed to inspect only parts of a given example? Can we reduce the amount of information necessary to successfully learn important concepts? This question is fundamental in understanding learning in general and designing efficient learning algorithms in particular. We show how recent advancements in convex optimization for machine learning yields positive answers to some of the above questions: there exists cases in which much more efficient algorithms exist for learning practically important concepts. Our goal is to characterize learning from the viewpoint of the amount of information necessary to learn, to design new algorithms that access less information than current state-of-the-art and are consequently significantly more efficient. New answers for these fundamental questions will be a breakthrough in our understanding of learning at large with significant potential for impact on the field of machine learning and its applications.

Ámbito científico (EuroSciVoc)

CORDIS clasifica los proyectos con EuroSciVoc, una taxonomía plurilingüe de ámbitos científicos, mediante un proceso semiautomático basado en técnicas de procesamiento del lenguaje natural. Véas: El vocabulario científico europeo..

Para utilizar esta función, debe iniciar sesión o registrarse

Tema(s)

Las convocatorias de propuestas se dividen en temas. Un tema define una materia o área específica para la que los solicitantes pueden presentar propuestas. La descripción de un tema comprende su alcance específico y la repercusión prevista del proyecto financiado.

Convocatoria de propuestas

Procedimiento para invitar a los solicitantes a presentar propuestas de proyectos con el objetivo de obtener financiación de la UE.

ERC-2013-StG
Consulte otros proyectos de esta convocatoria

Régimen de financiación

Régimen de financiación (o «Tipo de acción») dentro de un programa con características comunes. Especifica: el alcance de lo que se financia; el porcentaje de reembolso; los criterios específicos de evaluación para optar a la financiación; y el uso de formas simplificadas de costes como los importes a tanto alzado.

ERC-SG - ERC Starting Grant

Institución de acogida

TECHNION - ISRAEL INSTITUTE OF TECHNOLOGY
Aportación de la UE
€ 1 453 802,00
Coste total

Los costes totales en que ha incurrido esta organización para participar en el proyecto, incluidos los costes directos e indirectos. Este importe es un subconjunto del presupuesto total del proyecto.

Sin datos

Beneficiarios (1)

Mi folleto 0 0