Skip to main content
Przejdź do strony domowej Komisji Europejskiej (odnośnik otworzy się w nowym oknie)
polski polski
CORDIS - Wyniki badań wspieranych przez UE
CORDIS
Zawartość zarchiwizowana w dniu 2024-06-18

Information-optimal machine learning

Cel

The statistical and computational theory of learning is one of the prime achievements of computer science and engineering. This is evident both in terms of mathematical elegance of capturing intuitive notions rigorously as well as in terms of practical applicability: machine learning has effectively reshaped the way we use information.
In this proposal we tackle the very basic notions of learning. Learning theory traditional focuses on statistics and computation. We propose to add information to the characterization of learning: namely the research question we address is: how much information is necessary to learn a certain concept efficiently?
The crucial difference from classical learning theory is that traditionally statistical complexity was measured in terms of the number of examples needed to learn a concept. Our question is more finely grained: what if we are allowed to inspect only parts of a given example? Can we reduce the amount of information necessary to successfully learn important concepts? This question is fundamental in understanding learning in general and designing efficient learning algorithms in particular. We show how recent advancements in convex optimization for machine learning yields positive answers to some of the above questions: there exists cases in which much more efficient algorithms exist for learning practically important concepts. Our goal is to characterize learning from the viewpoint of the amount of information necessary to learn, to design new algorithms that access less information than current state-of-the-art and are consequently significantly more efficient. New answers for these fundamental questions will be a breakthrough in our understanding of learning at large with significant potential for impact on the field of machine learning and its applications.

Dziedzina nauki (EuroSciVoc)

Klasyfikacja projektów w serwisie CORDIS opiera się na wielojęzycznej taksonomii EuroSciVoc, obejmującej wszystkie dziedziny nauki, w oparciu o półautomatyczny proces bazujący na technikach przetwarzania języka naturalnego. Więcej informacji: Europejski Słownik Naukowy.

Aby użyć tej funkcji, musisz się zalogować lub zarejestrować

Program(-y)

Wieloletnie programy finansowania, które określają priorytety Unii Europejskiej w obszarach badań naukowych i innowacji.

Temat(-y)

Zaproszenia do składania wniosków dzielą się na tematy. Każdy temat określa wybrany obszar lub wybrane zagadnienie, których powinny dotyczyć wnioski składane przez wnioskodawców. Opis tematu obejmuje jego szczegółowy zakres i oczekiwane oddziaływanie finansowanego projektu.

Zaproszenie do składania wniosków

Procedura zapraszania wnioskodawców do składania wniosków projektowych w celu uzyskania finansowania ze środków Unii Europejskiej.

ERC-2013-StG
Zobacz inne projekty w ramach tego zaproszenia

System finansowania

Program finansowania (lub „rodzaj działania”) realizowany w ramach programu o wspólnych cechach. Określa zakres finansowania, stawkę zwrotu kosztów, szczegółowe kryteria oceny kwalifikowalności kosztów w celu ich finansowania oraz stosowanie uproszczonych form rozliczania kosztów, takich jak rozliczanie ryczałtowe.

ERC-SG - ERC Starting Grant

Instytucja przyjmująca

TECHNION - ISRAEL INSTITUTE OF TECHNOLOGY
Wkład UE
€ 1 453 802,00
Koszt całkowity

Ogół kosztów poniesionych przez organizację w związku z uczestnictwem w projekcie. Obejmuje koszty bezpośrednie i pośrednie. Kwota stanowi część całkowitego budżetu projektu.

Brak danych

Beneficjenci (1)

Moja broszura 0 0