Skip to main content
Vai all'homepage della Commissione europea (si apre in una nuova finestra)
italiano italiano
CORDIS - Risultati della ricerca dell’UE
CORDIS
Contenuto archiviato il 2024-06-18

Information-optimal machine learning

Obiettivo

The statistical and computational theory of learning is one of the prime achievements of computer science and engineering. This is evident both in terms of mathematical elegance of capturing intuitive notions rigorously as well as in terms of practical applicability: machine learning has effectively reshaped the way we use information.
In this proposal we tackle the very basic notions of learning. Learning theory traditional focuses on statistics and computation. We propose to add information to the characterization of learning: namely the research question we address is: how much information is necessary to learn a certain concept efficiently?
The crucial difference from classical learning theory is that traditionally statistical complexity was measured in terms of the number of examples needed to learn a concept. Our question is more finely grained: what if we are allowed to inspect only parts of a given example? Can we reduce the amount of information necessary to successfully learn important concepts? This question is fundamental in understanding learning in general and designing efficient learning algorithms in particular. We show how recent advancements in convex optimization for machine learning yields positive answers to some of the above questions: there exists cases in which much more efficient algorithms exist for learning practically important concepts. Our goal is to characterize learning from the viewpoint of the amount of information necessary to learn, to design new algorithms that access less information than current state-of-the-art and are consequently significantly more efficient. New answers for these fundamental questions will be a breakthrough in our understanding of learning at large with significant potential for impact on the field of machine learning and its applications.

Campo scientifico (EuroSciVoc)

CORDIS classifica i progetti con EuroSciVoc, una tassonomia multilingue dei campi scientifici, attraverso un processo semi-automatico basato su tecniche NLP. Cfr.: https://op.europa.eu/it/web/eu-vocabularies/euroscivoc.

È necessario effettuare l’accesso o registrarsi per utilizzare questa funzione

Argomento(i)

Gli inviti a presentare proposte sono suddivisi per argomenti. Un argomento definisce un’area o un tema specifico per il quale i candidati possono presentare proposte. La descrizione di un argomento comprende il suo ambito specifico e l’impatto previsto del progetto finanziato.

Invito a presentare proposte

Procedura per invitare i candidati a presentare proposte di progetti, con l’obiettivo di ricevere finanziamenti dall’UE.

ERC-2013-StG
Vedi altri progetti per questo bando

Meccanismo di finanziamento

Meccanismo di finanziamento (o «Tipo di azione») all’interno di un programma con caratteristiche comuni. Specifica: l’ambito di ciò che viene finanziato; il tasso di rimborso; i criteri di valutazione specifici per qualificarsi per il finanziamento; l’uso di forme semplificate di costi come gli importi forfettari.

ERC-SG - ERC Starting Grant

Istituzione ospitante

TECHNION - ISRAEL INSTITUTE OF TECHNOLOGY
Contributo UE
€ 1 453 802,00
Costo totale

I costi totali sostenuti dall’organizzazione per partecipare al progetto, compresi i costi diretti e indiretti. Questo importo è un sottoinsieme del bilancio complessivo del progetto.

Nessun dato

Beneficiari (1)

Il mio fascicolo 0 0