Objective
Neurons are the building blocks of the brain. The ability of neurons to receive, process and transmit information depends on their polarized organization into axons and dendrites. To build such a highly polarized cell, cellular components synthesized in the cell body are differentially transported to either axons or dendrites. Polarized transport is driven by three families of cytoskeletal motor proteins, which can walk in different directions over the actin or microtubule cytoskeleton. Many subfamilies of motor proteins exist, but how each of these motor proteins contributes to selective cargo delivery is unknown.
I have recently developed an approach to probe specific motor activity inside cells, which revealed that many microtubule-based motors selectively target axons. However, the molecular mechanisms behind this remarkable selectivity are unknown. In addition, it is well-established that most cargos are transported by a combination of different motors, but how the activity of different types of motors on the same cargo is integrated has remained unclear.
The aim of this proposal is to understand how motor proteins navigate the neuronal cytoskeleton. We will take a multidisciplinary approach and combine neurobiology, molecular engineering, advanced microscopy, and mathematical modelling to study the origin of motor selectivity as well as the collective activity of dissimilar motor teams. We will employ and expand our unique methodology to: 1) Study how the spatial organization and post-translational modifications of the microtubule cytoskeleton facilitate selective transport. 2) Perform well-controlled intracellular multi-motor assays to understand the functional interplay between different types of motors.
Successful achievement of these objectives will uncover key mechanisms of polarized transport, which will be relevant for understanding transport-associated neurodegenerative diseases.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences biological sciences neurobiology
- natural sciences biological sciences biochemistry biomolecules proteins
- natural sciences physical sciences optics microscopy
- engineering and technology other engineering and technologies microtechnology molecular engineering
- natural sciences mathematics applied mathematics mathematical model
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
ERC-2013-StG
See other projects for this call
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Host institution
3584 CS Utrecht
Netherlands
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.