Skip to main content
Vai all'homepage della Commissione europea (si apre in una nuova finestra)
italiano italiano
CORDIS - Risultati della ricerca dell’UE
CORDIS
Contenuto archiviato il 2024-05-27

'Orbital molecules' - self-organised states for orbitronics

Obiettivo

‘Orbital molecules’ are made up of coupled orbital states on several metal ions within an orbitally-ordered (and sometimes also charge-ordered) solid such as a transition metal oxide. Spin-singlet dimers (a weak metal-metal bond) are known in several materials, but recent discoveries of more exotic species such as 18-electron heptamers in AlV2O4 and 3-atom trimerons in magnetite (Fe3O4) have shown that a general new class of quantum electronic states that we call ‘orbital molecules’ awaits exploration.

The discovery of trimerons is particularly important as it provides the solution to the important and long-running problem of the low temperature Verwey phase of magnetite. This was discovered in 1939 but remained contentious as the complex superstructure was unknown. The applicant and co-workers recently used a synchrotron microcrystal technique to solve the structure. This showed that the Verwey transition is driven by Fe2+/3+ charge ordering in a first approximation, but with the formation of a self-organised network of trimeron orbital molecules that had not been predicted in over 70 years of previous study.

To expand the magnetite discovery into a general breakthrough in understanding quantum matter, this project will explore chemical tuning of orbital molecule self-organisation, discovery of novel orbital molecule orders in frustrated networks, and investigations of trimeron glass and liquid phases in magnetite. Evidence for liquid phases is key to possible applications. The project will develop high resolution diffraction and total scattering methods to determine long range and local orbital molecule orders, with further characterisation from magnetisation and conductivity measurements. Samples will be synthesised at ambient and high pressures.

This study will pioneer a new area of research in the electronic properties of solids, and may help to underpin future post-silicon orbitronic technologies based on the creation and manipulation of orbital states.

Campo scientifico (EuroSciVoc)

CORDIS classifica i progetti con EuroSciVoc, una tassonomia multilingue dei campi scientifici, attraverso un processo semi-automatico basato su tecniche NLP. Cfr.: https://op.europa.eu/it/web/eu-vocabularies/euroscivoc.

È necessario effettuare l’accesso o registrarsi per utilizzare questa funzione

Argomento(i)

Gli inviti a presentare proposte sono suddivisi per argomenti. Un argomento definisce un’area o un tema specifico per il quale i candidati possono presentare proposte. La descrizione di un argomento comprende il suo ambito specifico e l’impatto previsto del progetto finanziato.

Invito a presentare proposte

Procedura per invitare i candidati a presentare proposte di progetti, con l’obiettivo di ricevere finanziamenti dall’UE.

ERC-2013-ADG
Vedi altri progetti per questo bando

Meccanismo di finanziamento

Meccanismo di finanziamento (o «Tipo di azione») all’interno di un programma con caratteristiche comuni. Specifica: l’ambito di ciò che viene finanziato; il tasso di rimborso; i criteri di valutazione specifici per qualificarsi per il finanziamento; l’uso di forme semplificate di costi come gli importi forfettari.

ERC-AG - ERC Advanced Grant

Istituzione ospitante

THE UNIVERSITY OF EDINBURGH
Contributo UE
€ 2 315 142,00
Indirizzo
OLD COLLEGE, SOUTH BRIDGE
EH8 9YL Edinburgh
Regno Unito

Mostra sulla mappa

Regione
Scotland Eastern Scotland Edinburgh
Tipo di attività
Higher or Secondary Education Establishments
Collegamenti
Costo totale

I costi totali sostenuti dall’organizzazione per partecipare al progetto, compresi i costi diretti e indiretti. Questo importo è un sottoinsieme del bilancio complessivo del progetto.

Nessun dato

Beneficiari (1)

Il mio fascicolo 0 0