European Commission logo
français français
CORDIS - Résultats de la recherche de l’UE
CORDIS

From Structure Property to Structure Process Property Relations in Soft Matter – a Computational Physics Approach

Objectif

"From cell biology to polymer photovoltaics, (self-)assembly processes that give rise to morphology and functionality result from non-equilibrium processes, which are driven by both, external forces, such as flow due to pressure gradients, inserting energy, or manipulation on a local molecular level, or internal forces, such as relaxation into a state of lower free energy. The resulting material is arrested in a metastable state. Most previous work has focused on the relationship between structure and properties, while insight into the guiding principles governing the formation of a (new) material, has been lacking. However, a comprehensive molecular level understanding of non-equilibrium assembly would allow for control and manipulation of material processes and their resulting properties. This lag of knowledge can be traced to the formidable challenge in obtaining a molecular picture of non-equilibrium assembly. Non-equilibrium processes have been studied extensively on a macroscopic level by non-equilibrium thermodynamics. We take a novel route approaching the challenge from a molecular point of view. Recent advances in experimental, but especially computational modeling, now allow to follow (supra-) molecular structural evolution across the range of length and time scales necessary to comprehend, and ultimately control and manipulate macroscopic functional properties of soft matter at the molecular level. Soft matter is particularly suited for that approach, as it is “slow” and easy to manipulate. We take the computational physics route, based on simulations on different levels of resolution (all atom, coarse grained, continuum) in combination with recent multiscale and adaptive resolution techniques. This work will initiate the way towards a paradigm change from conventional Structure Property Relations (SPR) to molecularly based Structure Process Property Relations (SPPR)."

Appel à propositions

ERC-2013-ADG
Voir d’autres projets de cet appel

Régime de financement

ERC-AG - ERC Advanced Grant

Institution d’accueil

MAX-PLANCK-GESELLSCHAFT ZUR FORDERUNG DER WISSENSCHAFTEN EV
Contribution de l’UE
€ 2 025 000,00
Adresse
HOFGARTENSTRASSE 8
80539 Munchen
Allemagne

Voir sur la carte

Région
Bayern Oberbayern München, Kreisfreie Stadt
Type d’activité
Research Organisations
Chercheur principal
Kurt Kremer (Prof.)
Contact administratif
Zsolt Tóvári (Mr.)
Liens
Coût total
Aucune donnée

Bénéficiaires (1)