Skip to main content
Aller à la page d’accueil de la Commission européenne (s’ouvre dans une nouvelle fenêtre)
français français
CORDIS - Résultats de la recherche de l’UE
CORDIS
Contenu archivé le 2024-05-29

A Drosophila in vivo model of the glial repair response

Objectif

When central nervous system (CNS) neurons are damaged or lost, e.g. in spinal cord injury, glia over-proliferate leading to spontaneous remyelination and homeostasis maintenance, known as the glial repair response. This repair response is limited, but it reveals a tendency of the CNS to repair itself.

This is also manifested during normal development as neuronal and glial populations adjust cell number and axonal patterns to maintain structural CNS robustness. Upon spinal cord injury in mice, transplantation of non-myelinating ensheathing glia to the site of injury is sufficient to repair axonal trajectories and neuronal function. Thus, restoring glial populations may be both necessary and sufficient to promote CNS repair.

It is thus a great challenge to harness the glial repair response to implement repair. Little is known of what genes control glial precursor proliferation and differentiation. In mammals, Notch1 maintains glial precursors proliferative and Tumor Necrosis Factor provokes proliferation of glial precursors upon injury.

However, finding out whether a common genetic network underlies these observations, and whether they have any relevance for repair in vivo, is extremely challenging in vertebrates. Gene function can be tested in glia in vivo, in time-lapse and with single cell resolution using Drosophila as a model organism. Findings from Drosophila can then be tested in human glial precursors.

The applicant has discovered a glial repair-response in Drosophila adults, which depends on the gene eiger, a TNF-superfamily member. The host discovered a glial repair-response in the Drosophila embryo that requires the genes Notch and prospero, which control cell cycle gene expression and maintain glial precursors immature.

The aim is to test here whether a universal gene network linking the functions of Notch, Prospero and Eiger/TNF controls the glial repair-response and whether this gene network influences the recovery of axons upon injury in vivo.

Champ scientifique (EuroSciVoc)

CORDIS classe les projets avec EuroSciVoc, une taxonomie multilingue des domaines scientifiques, grâce à un processus semi-automatique basé sur des techniques TLN. Voir: Le vocabulaire scientifique européen.

Vous devez vous identifier ou vous inscrire pour utiliser cette fonction

Thème(s)

Les appels à propositions sont divisés en thèmes. Un thème définit un sujet ou un domaine spécifique dans le cadre duquel les candidats peuvent soumettre des propositions. La description d’un thème comprend sa portée spécifique et l’impact attendu du projet financé.

Appel à propositions

Procédure par laquelle les candidats sont invités à soumettre des propositions de projet en vue de bénéficier d’un financement de l’UE.

FP6-2005-MOBILITY-7
Voir d’autres projets de cet appel

Régime de financement

Régime de financement (ou «type d’action») à l’intérieur d’un programme présentant des caractéristiques communes. Le régime de financement précise le champ d’application de ce qui est financé, le taux de remboursement, les critères d’évaluation spécifiques pour bénéficier du financement et les formes simplifiées de couverture des coûts, telles que les montants forfaitaires.

IIF - Marie Curie actions-Incoming International Fellowships

Coordinateur

THE UNIVERSITY OF BIRMINGHAM
Contribution de l’UE
Aucune donnée
Coût total

Les coûts totaux encourus par l’organisation concernée pour participer au projet, y compris les coûts directs et indirects. Ce montant est un sous-ensemble du budget global du projet.

Aucune donnée
Mon livret 0 0