Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-05-29

3D Genome structure and function

Objective

Results will give new and important insight into how the eukaryotic genome in general, and the human genome in particular, operate inside the living cell. This program will lay the groundwork for understanding how, beyond the regulation at the individual gene level, large-scale chromatin structure affects the complex gene regulation networks in normal and deceased cells. Understanding molecular mechanisms that underlie regulation of this large set of genes is a key target in modern medical sciences and biotechnology. Our knowledge about gene regulation at the single gene and the epigenetic level is rapidly expanding.
However, our understanding of the role in gene control of the three-dimensional folding of the genome in the cell nucleus, is still poorly understood; this despite the fact that considerable evidence is available showing that large-scale chromatin organization plays an important role in gene control in higher eukaryotes. 3DGENOME has the ambition to force a breakthrough in our understanding of the relationship between the function of the genome and its dynamic 3D structure in the cell. To this end we will analyse the 3D structure of the human genome in the cell nucleus and relate this to its transcriptional activity. Structural analysis is carried out by fluorescent in situ hybridization (FISH) in combination with advanced 3D light microscopy. Large-scale chromatin structure of four selected chromosomes (11, 17, 18 and X) will be determined in three different cell types, differing in gene expression. Gene activity along the chromosomal fibre will be read from the human transcriptome map and correlated with structure. Work on human cells will be expanded to mouse and Drosophila,aiming at establishing causal and evolutionary conserved relationships between 3D genome structure and genome activity.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

FP6-2002-LIFESCIHEALTH
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

STREP - Specific Targeted Research Project

Coordinator

UNIVERSITEIT VAN AMSTERDAM
EU contribution
No data
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data

Participants (7)

My booklet 0 0