Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-05-29

Semidefinite and robust optimization and their economic applications

Objective

Robustness to modeling and estimation errors is an issue of critical importance for financial optimization problems because of the serious consequences of making wrong bets. Surprisingly, however, robust optimization has not been widely explored in financi al engineering. The research proposed here formulates robust dynamical models for financial problems and develops semidefmite programming (SDP) based methods for solving them. These models systematically account for parameter uncertainty and robustly updat e error-bounds as more information becomes available over time. In addition, this research extends the semidefmite relaxation methodology to probabilistically robust optimization problems that naturally emerge in the financial context. The other research f ocus of this proposal is on developing semidefmite models for graph theoretic problems such as the traveling salesman problem and network design. These models employ linear matrix inequalities (LMI) to represent 'geometric' constraints, such as graph conne ctivity, specified number of edge/vertex disjoint paths, etc. The optimization problems resulting from these LMI models are, typically, mixed integer semidefmite programs,Currently, mixed semidefmite programs are approximately solved by relaxing the integr ality constraints. However, as computational power increases and the interior point methods for solving semidefmite programs become more efficient, there grows a trend for developing systematic methods of tightening the relaxations - as in the case of line ar programming relaxations of mixed integer programs. As a first step in this direction, I propose to develop several cutting plane strategies for mixed semidefmite programs. Although the problems of interest belong to various application areas, they are l inked in that linear matrix inequalities and semidefmite programming provide the necessary tools to efficiently model and solve them.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

FP6-2002-MOBILITY-7
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

IIF - Marie Curie actions-Incoming International Fellowships

Coordinator

KATHOLIEKE UNIVERSITEIT BRABANT
EU contribution
No data
Address
Warandelaan, 2
TILBURG
Netherlands

See on map

Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data
My booklet 0 0