Skip to main content
Ir a la página de inicio de la Comisión Europea (se abrirá en una nueva ventana)
español español
CORDIS - Resultados de investigaciones de la UE
CORDIS
Contenido archivado el 2024-05-29

Semidefinite and robust optimization and their economic applications

Objetivo

Robustness to modeling and estimation errors is an issue of critical importance for financial optimization problems because of the serious consequences of making wrong bets. Surprisingly, however, robust optimization has not been widely explored in financi al engineering. The research proposed here formulates robust dynamical models for financial problems and develops semidefmite programming (SDP) based methods for solving them. These models systematically account for parameter uncertainty and robustly updat e error-bounds as more information becomes available over time. In addition, this research extends the semidefmite relaxation methodology to probabilistically robust optimization problems that naturally emerge in the financial context. The other research f ocus of this proposal is on developing semidefmite models for graph theoretic problems such as the traveling salesman problem and network design. These models employ linear matrix inequalities (LMI) to represent 'geometric' constraints, such as graph conne ctivity, specified number of edge/vertex disjoint paths, etc. The optimization problems resulting from these LMI models are, typically, mixed integer semidefmite programs,Currently, mixed semidefmite programs are approximately solved by relaxing the integr ality constraints. However, as computational power increases and the interior point methods for solving semidefmite programs become more efficient, there grows a trend for developing systematic methods of tightening the relaxations - as in the case of line ar programming relaxations of mixed integer programs. As a first step in this direction, I propose to develop several cutting plane strategies for mixed semidefmite programs. Although the problems of interest belong to various application areas, they are l inked in that linear matrix inequalities and semidefmite programming provide the necessary tools to efficiently model and solve them.

Ámbito científico (EuroSciVoc)

CORDIS clasifica los proyectos con EuroSciVoc, una taxonomía plurilingüe de ámbitos científicos, mediante un proceso semiautomático basado en técnicas de procesamiento del lenguaje natural. Véas: El vocabulario científico europeo..

Para utilizar esta función, debe iniciar sesión o registrarse

Palabras clave

Palabras clave del proyecto indicadas por el coordinador del proyecto. No confundir con la taxonomía EuroSciVoc (Ámbito científico).

Tema(s)

Las convocatorias de propuestas se dividen en temas. Un tema define una materia o área específica para la que los solicitantes pueden presentar propuestas. La descripción de un tema comprende su alcance específico y la repercusión prevista del proyecto financiado.

Convocatoria de propuestas

Procedimiento para invitar a los solicitantes a presentar propuestas de proyectos con el objetivo de obtener financiación de la UE.

FP6-2002-MOBILITY-7
Consulte otros proyectos de esta convocatoria

Régimen de financiación

Régimen de financiación (o «Tipo de acción») dentro de un programa con características comunes. Especifica: el alcance de lo que se financia; el porcentaje de reembolso; los criterios específicos de evaluación para optar a la financiación; y el uso de formas simplificadas de costes como los importes a tanto alzado.

IIF - Marie Curie actions-Incoming International Fellowships

Coordinador

KATHOLIEKE UNIVERSITEIT BRABANT
Aportación de la UE
Sin datos
Dirección
Warandelaan, 2
TILBURG
Países Bajos

Ver en el mapa

Coste total

Los costes totales en que ha incurrido esta organización para participar en el proyecto, incluidos los costes directos e indirectos. Este importe es un subconjunto del presupuesto total del proyecto.

Sin datos
Mi folleto 0 0