Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-06-18

Local Immunomodulation around implants by innovative auxiliary hydrogel-based systems encapsulating autologous and phenotype controlled macrophages

Objective

IMMODGEL aims to identify adverse immune reactions to dental and larynx titanium implants and to develop a novel therapeutic strategy to significantly decrease the implant and medical device failure caused by these reactions via design of an innovative immunomodulatory system. The system will be designed to be fixed to an implant via an adhesive polyelectrolyte multilayer and control the immune response by autologous, phenotype modulated macrophages encapsulated in a hydrogel. The auxiliary nature of the design allows it to be adjusted to any implant, medical device or transplant. IMMODGEL will apply complex systems immunology, epidemiology, and functional approaches to identify key adverse immune reactions caused by implants and detrimental macrophage phenotypes around titanium implants. This will be used to establish the optimal biomaterial composition and cytokine delivery system for the immunomodulatory hydrogel design to revert macrophage-induced inflammatory reactions (M1) to the optimal tolerogenic and healing reactions (M2). Long-term fixation of the desired M2 phenotype will significantly decrease the level and duration of implant-induced inflammation, and optimise healing phase. The interaction of implants and medical devices with the immune system will be modelled to develop a “Foreign Body Response on-a-chip” to predict patient’s specific responses to implant materials and modify the immunomodulatory hydrogel accordingly, as a step towards personalized implants with minimal adverse reactions. The gels will be incorporated to engineered tissues for validation. Validation of the approach will be performed in vivo in animal models. Significantly suppressed inflammatory responses and optimal tissue remodelling and healing around titanium implants is expected. The key innovation will be the development of IMMODGEL as an auxiliary system to improve the outcomes of implantation and reduce the cost of implant complication and related medical costs in Europe.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

FP7-HEALTH-2013-INNOVATION-1
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

CP-FP - Small or medium-scale focused research project

Coordinator

STEINBEIS 2I GMBH
EU contribution
No data
Address
LEUSCHNERSTRASSE 43
70176 STUTTGART
Germany

See on map

Region
Baden-Württemberg Stuttgart Stuttgart, Stadtkreis
Activity type
Private for-profit entities (excluding Higher or Secondary Education Establishments)
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data

Participants (9)

My booklet 0 0