Skip to main content
Weiter zur Homepage der Europäischen Kommission (öffnet in neuem Fenster)
Deutsch Deutsch
CORDIS - Forschungsergebnisse der EU
CORDIS
Inhalt archiviert am 2024-06-18

Scalable Similarity Search

Ziel

Similarity search is the task of identifying, in a collection of items, the ones that are “similar” to a given
query item. This task has a range of important applications (e.g. in information retrieval, pattern
recognition, statistics, and machine learning) where data sets are often big, high dimensional, and
possibly noisy. State-of-the-art methods for similarity search offer only weak guarantees when faced with
big data. Either the space overhead is excessive (1000s of times larger than the space for the data itself),
or the work needed to report the similar items may be comparable to the work needed to go through all
items (even if just a tiny fraction of the items are similar). As a result, many applications have to resort to
the use of ad-hoc solutions with only weak theoretical guarantees.

This proposal aims at strengthening the theoretical foundation of scalable similarity search, and
developing novel practical similarity search methods backed by theory. In particular we will:

- Leverage new types of embeddings that are kernelized, asymmetric, and complex-valued.

- Consider statistical models of noise in data, and design similarity search data structures whose
performance guarantees are phrased in statistical terms.

- Build a new theory of the communication complexity of distributed, dynamic similarity search,
emphasizing the communication bottleneck present in modern computing infrastructures.

The objective is to produce new methods for similarity search that are: 1) Provably robust, 2) scalable
to large and high-dimensional data sets, 3) substantially more resource efficient than current state-ofthe-
art solutions, and 4) able to provide statistical guarantees on query answers.

The study of similarity search has been an incubator for techniques (e.g. locality-sensitive hashing and
random projections) that have wide-ranging applications. The new techniques developed in this project
are likely to have significant impacts beyond similarity search.

Wissenschaftliches Gebiet (EuroSciVoc)

CORDIS klassifiziert Projekte mit EuroSciVoc, einer mehrsprachigen Taxonomie der Wissenschaftsbereiche, durch einen halbautomatischen Prozess, der auf Verfahren der Verarbeitung natürlicher Sprache beruht. Siehe: Das European Science Vocabulary.

Sie müssen sich anmelden oder registrieren, um diese Funktion zu nutzen

Programm/Programme

Mehrjährige Finanzierungsprogramme, in denen die Prioritäten der EU für Forschung und Innovation festgelegt sind.

Thema/Themen

Aufforderungen zur Einreichung von Vorschlägen sind nach Themen gegliedert. Ein Thema definiert einen bestimmten Bereich oder ein Gebiet, zu dem Vorschläge eingereicht werden können. Die Beschreibung eines Themas umfasst seinen spezifischen Umfang und die erwarteten Auswirkungen des finanzierten Projekts.

Aufforderung zur Vorschlagseinreichung

Verfahren zur Aufforderung zur Einreichung von Projektvorschlägen mit dem Ziel, eine EU-Finanzierung zu erhalten.

ERC-2013-CoG
Andere Projekte für diesen Aufruf anzeigen

Finanzierungsplan

Finanzierungsregelung (oder „Art der Maßnahme“) innerhalb eines Programms mit gemeinsamen Merkmalen. Sieht folgendes vor: den Umfang der finanzierten Maßnahmen, den Erstattungssatz, spezifische Bewertungskriterien für die Finanzierung und die Verwendung vereinfachter Kostenformen wie Pauschalbeträge.

ERC-CG - ERC Consolidator Grants

Gastgebende Einrichtung

IT-UNIVERSITETET I KOBENHAVN
EU-Beitrag
€ 1 889 711,73
Adresse
RUED LANGGAARDSVEJ 7
2300 Kobenhavn
Dänemark

Auf der Karte ansehen

Region
Danmark Hovedstaden Byen København
Aktivitätstyp
Higher or Secondary Education Establishments
Links
Gesamtkosten

Die Gesamtkosten, die dieser Organisation durch die Beteiligung am Projekt entstanden sind, einschließlich der direkten und indirekten Kosten. Dieser Betrag ist Teil des Gesamtbudgets des Projekts.

Keine Daten

Begünstigte (1)

Mein Booklet 0 0