Skip to main content

MODeling Electron Non-Adiabatic DYNAmics


The aim of this project (MODENADYNA) is to push Time-Dependent Density Functional Theory (TDDFT) beyond the present 'state of the art' by implementing a novel computational scheme to MODel Electron Non-Adiabatic DYNAmics due to electron-electron scattering processes. This goal matches the needs of: (i) going beyond the simplest adiabatic approximation -- commonly adopted in the description of ultrafast phenomena at the nanoscale; and
(ii) dealing with the actual spatial inhomogeneities of many-electron systems at non-adiabatic level.

Adiabatic approximation partially or completely fails to describe a large class of physical phenomena, such as multiple excitations, charge-transfer and dissipation processes. The required dynamical corrections to describe the physics and chemistry of the systems of interest must also take into account the different degree of spatial localization of the electrons. For example, this is needed in the calculations of atomic transition energies or in the simulation of electron transport through a molecular junction. Other remarkable examples are light-harvesting processes, in which a photon is absorbed by the system on an ultra-short time scale, while dramatic changes both in charge distribution and ion configuration may occur on a much longer time scale. These are examples which demand a theoretical description of the electron dynamics over different time scales and spatial regions.

The knowledge that will be transferred to Europe by this project is significant both on the theoretical and on the applicative levels. The developed algorithms will be delivered within renowned European open-source TDDFT codes.
This will allow Europe to gain a position of advantage in the capability of simulating, manipulating, and eventually controlling matter on the nanoscale. European excellence in the field will be consolidated along with the career of the fellow.
Long-term international collaborations will be strongly stimulated as well.

Call for proposal

See other projects for this call


Piazzale Aldo Moro 7
00185 Roma
Activity type
Research Organisations
EU contribution
€ 249 242,80
Administrative Contact
Paola Corezzola (Dr.)