Skip to main content
European Commission logo
Deutsch Deutsch
CORDIS - Forschungsergebnisse der EU
CORDIS
CORDIS Web 30th anniversary CORDIS Web 30th anniversary
Inhalt archiviert am 2024-05-27

Ecosystem loss of soil inorganic carbon with agricultural conversion: fate, rate, mechanisms, and pathways

Ziel

The goal of this proposed research is to understand effects of agricultural conversions on soil inorganic carbon (SIC) cycle. Mitigating rising atmospheric CO2 is a top priority for human and environmental health. Despite their prevalence and increasing pressure from land-use changes, effect of SIC on climate regulation is thought to be insignificant in the short-term, leading to focused efforts and research on other means of carbon sequestration. The proposed research builds on the fellow’s previous NSF-funded project, in which large losses of SIC were observed with the land-use changes, and has potential to transform the current understanding of these issues. In this proposal, soil incubations in a factorial design will simulate land use-induced ecosystem changes (soil water flux, acidification, freeze-thaw cycle) to identify mechanisms of SIC transformations. Incubators customized for the field-observed conditions such as drainage, are used to approximate water-carbonate reactions closely, and periodic measurements of inorganic carbon in gas and water fluxes using stable isotopes will determine the potential rates and pathways of fluxes from SIC. Lab and field conditions will be simulated with coupled geochemistry and hydrology codes and the results compared to those from the lab and field to help improve our understanding of SIC processes. The proposal integrates geochemistry and hydrology with original methodologies involving field, lab, and modeled data for predictive understanding of rate, fate, and mechanisms of SIC transformations with land-use changes. The mentor (Dr. S. Trumbore) and the host institute (Max Planck Institute of Biogeochemistry in Jena, Germany) collectively bring expertise in isotopes and biogeochemical modeling, demonstrate excellent research and training track records, and comprise a research setting uniquely adapted to the project and the fellow.

Aufforderung zur Vorschlagseinreichung

FP7-PEOPLE-2013-IEF
Andere Projekte für diesen Aufruf anzeigen

Koordinator

MAX-PLANCK-GESELLSCHAFT ZUR FORDERUNG DER WISSENSCHAFTEN EV
EU-Beitrag
€ 168 794,40
Adresse
HOFGARTENSTRASSE 8
80539 Munchen
Deutschland

Auf der Karte ansehen

Region
Bayern Oberbayern München, Kreisfreie Stadt
Aktivitätstyp
Research Organisations
Kontakt Verwaltung
Corinne Sacher (Mrs.)
Links
Gesamtkosten
Keine Daten