Skip to main content
Ir a la página de inicio de la Comisión Europea (se abrirá en una nueva ventana)
español español
CORDIS - Resultados de investigaciones de la UE
CORDIS
Contenido archivado el 2024-05-28

Enumeration of discrete structures: algebraic, analytic, probabilistic and algorithmic methods for enriched planar graphs and planar maps

Objetivo

Our aim in this project is to built on recent combinatorial and algorithmic progress to attack a series of problems that have independently surfaced in the graph enumeration setting, as well as to develop a more systematic approach that works on a wide class of random graph families.

The central objects under study are planar graphs and planar embedded graphs (also called maps). The enumeration theory of these objects was initiated by Tutte in the 1960s when studying rooted planar maps; later, in the 1970s, there has been more emphasis on asymptotics and the interplay between graph enumeration and the theory of random graphs. The field has grown enormously since then and many classes of maps have been studied, including maps in arbitrary surfaces. Moreover, deep connections with algebra, low-dimensional topology, probability and statistical physics have been uncovered.

Recently the interest in planar maps and graphs has considerably increased, due to fundamental constructions by Schaeffer (bijections for planar maps in terms of enriched tree structures), and Giménez and Noy (generating function techniques joint with analytic tools). Our objective is to continue the lines of these achievements and explore their interactions with other domains, specially with computer science.

More precisely, the main goals of this project are to develop new tools to deal with open questions in the field, including the study of bipartite families of graphs, unlabelled families of graphs, and planar graphs with restricted vertex degrees, among other questions. In most of the cases, the interaction between the map enumeration domain and the algorithmic setting will be strongly explored.

The main techniques exploited in this project arise from the Analytic Combinatorics setting: that is, the combinatorial structure is translated into equations of generating functions, that can be studied by means of complex analytic methods, joint with probabilistic techniques.

Ámbito científico (EuroSciVoc)

CORDIS clasifica los proyectos con EuroSciVoc, una taxonomía plurilingüe de ámbitos científicos, mediante un proceso semiautomático basado en técnicas de procesamiento del lenguaje natural. Véas: El vocabulario científico europeo..

Para utilizar esta función, debe iniciar sesión o registrarse

Programa(s)

Programas de financiación plurianuales que definen las prioridades de la UE en materia de investigación e innovación.

Tema(s)

Las convocatorias de propuestas se dividen en temas. Un tema define una materia o área específica para la que los solicitantes pueden presentar propuestas. La descripción de un tema comprende su alcance específico y la repercusión prevista del proyecto financiado.

Convocatoria de propuestas

Procedimiento para invitar a los solicitantes a presentar propuestas de proyectos con el objetivo de obtener financiación de la UE.

FP7-PEOPLE-2013-CIG
Consulte otros proyectos de esta convocatoria

Régimen de financiación

Régimen de financiación (o «Tipo de acción») dentro de un programa con características comunes. Especifica: el alcance de lo que se financia; el porcentaje de reembolso; los criterios específicos de evaluación para optar a la financiación; y el uso de formas simplificadas de costes como los importes a tanto alzado.

MC-CIG - Support for training and career development of researcher (CIG)

Coordinador

FREIE UNIVERSITAET BERLIN
Aportación de la UE
€ 100 000,00
Dirección
KAISERSWERTHER STRASSE 16-18
14195 Berlin
Alemania

Ver en el mapa

Región
Berlin Berlin Berlin
Tipo de actividad
Higher or Secondary Education Establishments
Enlaces
Coste total

Los costes totales en que ha incurrido esta organización para participar en el proyecto, incluidos los costes directos e indirectos. Este importe es un subconjunto del presupuesto total del proyecto.

Sin datos
Mi folleto 0 0