Ziel
Our aim in this project is to built on recent combinatorial and algorithmic progress to attack a series of problems that have independently surfaced in the graph enumeration setting, as well as to develop a more systematic approach that works on a wide class of random graph families.
The central objects under study are planar graphs and planar embedded graphs (also called maps). The enumeration theory of these objects was initiated by Tutte in the 1960s when studying rooted planar maps; later, in the 1970s, there has been more emphasis on asymptotics and the interplay between graph enumeration and the theory of random graphs. The field has grown enormously since then and many classes of maps have been studied, including maps in arbitrary surfaces. Moreover, deep connections with algebra, low-dimensional topology, probability and statistical physics have been uncovered.
Recently the interest in planar maps and graphs has considerably increased, due to fundamental constructions by Schaeffer (bijections for planar maps in terms of enriched tree structures), and Giménez and Noy (generating function techniques joint with analytic tools). Our objective is to continue the lines of these achievements and explore their interactions with other domains, specially with computer science.
More precisely, the main goals of this project are to develop new tools to deal with open questions in the field, including the study of bipartite families of graphs, unlabelled families of graphs, and planar graphs with restricted vertex degrees, among other questions. In most of the cases, the interaction between the map enumeration domain and the algorithmic setting will be strongly explored.
The main techniques exploited in this project arise from the Analytic Combinatorics setting: that is, the combinatorial structure is translated into equations of generating functions, that can be studied by means of complex analytic methods, joint with probabilistic techniques.
Wissenschaftliches Gebiet (EuroSciVoc)
CORDIS klassifiziert Projekte mit EuroSciVoc, einer mehrsprachigen Taxonomie der Wissenschaftsbereiche, durch einen halbautomatischen Prozess, der auf Verfahren der Verarbeitung natürlicher Sprache beruht. Siehe: Das European Science Vocabulary.
CORDIS klassifiziert Projekte mit EuroSciVoc, einer mehrsprachigen Taxonomie der Wissenschaftsbereiche, durch einen halbautomatischen Prozess, der auf Verfahren der Verarbeitung natürlicher Sprache beruht. Siehe: Das European Science Vocabulary.
- Naturwissenschaften Mathematik reine Mathematik Algebra
- Naturwissenschaften Informatik und Informationswissenschaften
- Naturwissenschaften Mathematik reine Mathematik Topologie algebraische Topologie
- Naturwissenschaften Mathematik reine Mathematik diskrete Mathematik Graphentheorie
- Naturwissenschaften Mathematik reine Mathematik diskrete Mathematik Kombinatorik
Sie müssen sich anmelden oder registrieren, um diese Funktion zu nutzen
Wir bitten um Entschuldigung ... während der Ausführung ist ein unerwarteter Fehler aufgetreten.
Sie müssen sich authentifizieren. Ihre Sitzung ist möglicherweise abgelaufen.
Vielen Dank für Ihr Feedback. Sie erhalten in Kürze eine E-Mail zur Übermittlungsbestätigung. Wenn Sie sich für eine Benachrichtigung über den Berichtsstatus entschieden haben, werden Sie auch im Falle einer Änderung des Berichtsstatus benachrichtigt.
Programm/Programme
Mehrjährige Finanzierungsprogramme, in denen die Prioritäten der EU für Forschung und Innovation festgelegt sind.
Mehrjährige Finanzierungsprogramme, in denen die Prioritäten der EU für Forschung und Innovation festgelegt sind.
Thema/Themen
Aufforderungen zur Einreichung von Vorschlägen sind nach Themen gegliedert. Ein Thema definiert einen bestimmten Bereich oder ein Gebiet, zu dem Vorschläge eingereicht werden können. Die Beschreibung eines Themas umfasst seinen spezifischen Umfang und die erwarteten Auswirkungen des finanzierten Projekts.
Aufforderungen zur Einreichung von Vorschlägen sind nach Themen gegliedert. Ein Thema definiert einen bestimmten Bereich oder ein Gebiet, zu dem Vorschläge eingereicht werden können. Die Beschreibung eines Themas umfasst seinen spezifischen Umfang und die erwarteten Auswirkungen des finanzierten Projekts.
Aufforderung zur Vorschlagseinreichung
Verfahren zur Aufforderung zur Einreichung von Projektvorschlägen mit dem Ziel, eine EU-Finanzierung zu erhalten.
Verfahren zur Aufforderung zur Einreichung von Projektvorschlägen mit dem Ziel, eine EU-Finanzierung zu erhalten.
FP7-PEOPLE-2013-CIG
Andere Projekte für diesen Aufruf anzeigen
Finanzierungsplan
Finanzierungsregelung (oder „Art der Maßnahme“) innerhalb eines Programms mit gemeinsamen Merkmalen. Sieht folgendes vor: den Umfang der finanzierten Maßnahmen, den Erstattungssatz, spezifische Bewertungskriterien für die Finanzierung und die Verwendung vereinfachter Kostenformen wie Pauschalbeträge.
Finanzierungsregelung (oder „Art der Maßnahme“) innerhalb eines Programms mit gemeinsamen Merkmalen. Sieht folgendes vor: den Umfang der finanzierten Maßnahmen, den Erstattungssatz, spezifische Bewertungskriterien für die Finanzierung und die Verwendung vereinfachter Kostenformen wie Pauschalbeträge.
MC-CIG - Support for training and career development of researcher (CIG)
Koordinator
14195 Berlin
Deutschland
Die Gesamtkosten, die dieser Organisation durch die Beteiligung am Projekt entstanden sind, einschließlich der direkten und indirekten Kosten. Dieser Betrag ist Teil des Gesamtbudgets des Projekts.