Skip to main content
Aller à la page d’accueil de la Commission européenne (s’ouvre dans une nouvelle fenêtre)
français français
CORDIS - Résultats de la recherche de l’UE
CORDIS
Contenu archivé le 2024-06-18

Analytic problems in Coarse Geometry and Geometric Group Theory

Objectif

The overall goal of this proposal is a systematic study of C*-algebras related to coarse structures of metric spaces and discrete groups. The background theme is the interplay between analysis and coarse geometry. It addresses questions relating to exactness of discrete groups and spaces, Roe algebras and the Baum--Connes conjectures.

The interplay between coarse and analytic properties is exemplified by the first objective: computing the nuclear dimension of Roe algebras in terms of asymptotic dimension of the underlying space. Nuclear dimension of C*-algebras is a recent notion that plays a tremendous role in Elliott's Classification Program of C*-algebras. The motivation for this objective is to systematically study the parallels between C*-algebraic methods of the Classification Program and topological and K-theoretic methods used for Novikov-type conjectures.

The second objective is to expand the techniques from Geometric Group Theory to produce a concrete example of a non-exact group. So far the only such examples are shown to exist by probabilistic methods, after an outline by M. Gromov. As non-exactness is highly relevant for (the potential failure of) the Baum-Connes conjecture, having concrete examples to study would be paradigm-shifting. The idea for such a construction is to generalize the small cancellation theory to a coarse setting.

The last objective is to prove the Baum-Connes conjecture for certain limits of hyperbolic groups, using the quantitative K-theory of Oyono-Oyono and Yu. Since most of the examples of discrete groups with unusual properties (e.g. non-exact) are constructed as such limits, showing that some of them do satisfy the conjecture is desirable.

Champ scientifique (EuroSciVoc)

CORDIS classe les projets avec EuroSciVoc, une taxonomie multilingue des domaines scientifiques, grâce à un processus semi-automatique basé sur des techniques TLN. Voir: Le vocabulaire scientifique européen.

Vous devez vous identifier ou vous inscrire pour utiliser cette fonction

Programme(s)

Programmes de financement pluriannuels qui définissent les priorités de l’UE en matière de recherche et d’innovation.

Thème(s)

Les appels à propositions sont divisés en thèmes. Un thème définit un sujet ou un domaine spécifique dans le cadre duquel les candidats peuvent soumettre des propositions. La description d’un thème comprend sa portée spécifique et l’impact attendu du projet financé.

Appel à propositions

Procédure par laquelle les candidats sont invités à soumettre des propositions de projet en vue de bénéficier d’un financement de l’UE.

FP7-PEOPLE-2013-CIG
Voir d’autres projets de cet appel

Régime de financement

Régime de financement (ou «type d’action») à l’intérieur d’un programme présentant des caractéristiques communes. Le régime de financement précise le champ d’application de ce qui est financé, le taux de remboursement, les critères d’évaluation spécifiques pour bénéficier du financement et les formes simplifiées de couverture des coûts, telles que les montants forfaitaires.

MC-CIG - Support for training and career development of researcher (CIG)

Coordinateur

UNIVERSITY OF SOUTHAMPTON
Contribution de l’UE
€ 100 000,00
Adresse
Highfield
SO17 1BJ Southampton
Royaume-Uni

Voir sur la carte

Région
South East (England) Hampshire and Isle of Wight Southampton
Type d’activité
Higher or Secondary Education Establishments
Liens
Coût total

Les coûts totaux encourus par l’organisation concernée pour participer au projet, y compris les coûts directs et indirects. Ce montant est un sous-ensemble du budget global du projet.

Aucune donnée
Mon livret 0 0