Descripción del proyecto
Métodos computacionales innovadores para la descripción de sonidos ambientales
Los sonidos cotidianos pueden proporcionar información valiosa sobre nuestro entorno y los acontecimientos que ocurren en él. Sin embargo, la tecnología actual tiene dificultades para identificar fuentes sonoras individuales en paisajes sonoros complejos en los que hay múltiples sonidos presentes y distorsionados por el entorno circundante. Para resolver este problema, el equipo del proyecto EVERYSOUND, financiado por el Consejo Europeo de Investigación, pretende desarrollar métodos computacionales capaces de proporcionar automáticamente descripciones de alto nivel de los sonidos ambientales. Utilizará técnicas innovadoras como la separación de fuentes conjuntas y algoritmos robustos de clasificación de patrones para reconocer con fiabilidad múltiples sonidos superpuestos. Además, se desarrollará una taxonomía jerárquica multicapa para clasificar con precisión los sonidos cotidianos. Los resultados del proyecto proporcionarán herramientas valiosas para estudios geográficos, sociales, culturales y de biología.
Objetivo
Sounds carry a large amount of information about our everyday environment and physical events that take place in it. For example, when a car is passing by, one can perceive the approximate size and speed of the car. Sound can easily and unobtrusively be captured e.g. by mobile phones and transmitted further – for example, tens of hours of audio is uploaded to the internet every minute e.g. in the form of YouTube videos. However, today's technology is not able to recognize individual sound sources in realistic soundscapes, where multiple sounds are present, often simultaneously, and distorted by the environment.
The ground-breaking objective of EVERYSOUND is to develop computational methods which will automatically provide high-level descriptions of environmental sounds in realistic everyday soundscapes such as street, park, home, etc. This requires developing several novel methods, including joint source separation and robust pattern classification algorithms to reliably recognize multiple overlapping sounds, and a hierarchical multilayer taxonomy to accurately categorize everyday sounds. The methods are based on the applicant's internationally recognized and awarded expertise on source separation and robust pattern recognition in speech and music processing, which will allow now tackling the new and challenging research area of everyday sound recognition.
The results of EVERYSOUND will enable searching for multimedia based on its audio content, which is not possible with today's technology. It will allow mobile devices, robots, and intelligent monitoring systems to recognize activities in their environments using acoustic information. Producing automatically descriptions of vast quantities of audio will give new tools for geographical, social, cultural, and biological studies to analyze sounds related to human, animal, and natural activity in urban and rural areas, as well as multimedia in social networks.
Ámbito científico
- natural sciencescomputer and information sciencescomputational science
- natural sciencesbiological sciencesecologyecosystems
- natural sciencescomputer and information sciencesartificial intelligencemachine learningdeep learning
- natural sciencescomputer and information sciencesartificial intelligencepattern recognition
- natural sciencescomputer and information sciencesartificial intelligencecomputational intelligence
Programa(s)
Régimen de financiación
ERC-STG - Starting GrantInstitución de acogida
33100 Tampere
Finlandia