Project description
Harmonic analysis at the interface of Fourier analysis and partial differential equations
Harmonics are oscillations of a signal in time with a frequency that is a positive integer multiple of a so-called fundamental frequency. Examples of simple harmonic motion include an oscillating pendulum and a vibrating guitar string or eardrum. Harmonic analysis decomposes harmonic motion, determining the individual harmonics that together create the final waveform. Fourier analysis, expressing a complex wave as a sum of sines and cosines, and partial differential equations (PDEs) are essential tools in the study of harmonics. The European Research Council-funded FAnFArE project will study problems at the interface of Fourier analysis and PDEs, advancing theories relating to frequencies, oscillation and space-time resonances in a systematic way.
Objective
"This project aims to develop the field of Harmonic Analysis, and more precisely to study problems at the interface between Fourier Analysis and PDEs (and also some Geometry).
We are interested in two aspects of the Fourier Analysis :
(1) The Euclidean Fourier Analysis, where a deep analysis can be performed using specificities as the notion of ``frequencies'' (involving the Fourier transform) or the geometry of the Euclidean balls. By taking advantage of them, this proposal aims to pursue the study and bring novelties in three fashionable topics : the study of bilinear/multilinear Fourier multipliers, the development of the ``space-time resonances'' method in a systematic way and for some specific PDEs, and the study of nonlinear transport equations in BMO-type spaces (as Euler and Navier-Stokes equations).
(2) A Functional Fourier Analysis, which can be performed in a more general situation using the notion of ``oscillation'' adapted to a heat semigroup (or semigroup of operators). This second Challenge is (at the same time) independent of the first one and also very close. It is very close, due to the same point of view of Fourier Analysis involving a space decomposition and simultaneously some frequency decomposition. However they are quite independent because the main goal is to extend/develop an analysis in the more general framework given by a semigroup of operators (so without using the previous Euclidean specificities). By this way, we aim to transfer some results known in the Euclidean situation to some Riemannian manifolds, Fractals sets, bounded open set setting, ... Still having in mind some applications to the study of PDEs, such questions make also a connexion with the geometry of the ambient spaces (by its Riesz transform, Poincaré inequality, ...). I propose here to attack different problems as dispersive estimates, ""L^p""-version of De Giorgi inequalities and the study of paraproducts, all of them with a heat semigroup point of view."
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences mathematics pure mathematics mathematical analysis fourier analysis
- natural sciences mathematics pure mathematics geometry
- natural sciences mathematics pure mathematics mathematical analysis differential equations partial differential equations
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
ERC-STG - Starting Grant
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2014-STG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
75794 PARIS
France
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.