Opis projektu
Analiza harmoniczna na styku analizy Fouriera i równań różniczkowych cząstkowych
Składowe harmoniczne to oscylacje sygnału w czasie z częstotliwością, która jest dodatnią całkowitą wielokrotnością tak zwanej częstotliwości podstawowej. Przykłady prostego ruchu harmonicznego obejmują oscylujące wahadło oraz drgającą strunę gitary lub błonę bębenkową. Analiza harmoniczna rozkłada ruch harmoniczny, określając poszczególne składowe harmoniczne, które razem tworzą ostateczny przebieg fali. Analiza Fouriera, czyli wyrażanie fali zespolonej jako sumy sinusów i cosinusów, oraz równania różniczkowe cząstkowe (PDE) są podstawowymi narzędziami w badaniu składowych harmonicznych. Zespół finansowanego przez Europejską Radę ds. Badań Naukowych projektu FAnFArE zbada problemy na styku analizy Fouriera i równań PDE, w systematyczny sposób rozwijając teorie związane z częstotliwościami, oscylacjami i rezonansami czasoprzestrzennymi.
Cel
"This project aims to develop the field of Harmonic Analysis, and more precisely to study problems at the interface between Fourier Analysis and PDEs (and also some Geometry).
We are interested in two aspects of the Fourier Analysis :
(1) The Euclidean Fourier Analysis, where a deep analysis can be performed using specificities as the notion of ``frequencies'' (involving the Fourier transform) or the geometry of the Euclidean balls. By taking advantage of them, this proposal aims to pursue the study and bring novelties in three fashionable topics : the study of bilinear/multilinear Fourier multipliers, the development of the ``space-time resonances'' method in a systematic way and for some specific PDEs, and the study of nonlinear transport equations in BMO-type spaces (as Euler and Navier-Stokes equations).
(2) A Functional Fourier Analysis, which can be performed in a more general situation using the notion of ``oscillation'' adapted to a heat semigroup (or semigroup of operators). This second Challenge is (at the same time) independent of the first one and also very close. It is very close, due to the same point of view of Fourier Analysis involving a space decomposition and simultaneously some frequency decomposition. However they are quite independent because the main goal is to extend/develop an analysis in the more general framework given by a semigroup of operators (so without using the previous Euclidean specificities). By this way, we aim to transfer some results known in the Euclidean situation to some Riemannian manifolds, Fractals sets, bounded open set setting, ... Still having in mind some applications to the study of PDEs, such questions make also a connexion with the geometry of the ambient spaces (by its Riesz transform, Poincaré inequality, ...). I propose here to attack different problems as dispersive estimates, ""L^p""-version of De Giorgi inequalities and the study of paraproducts, all of them with a heat semigroup point of view."
Dziedzina nauki (EuroSciVoc)
Klasyfikacja projektów w serwisie CORDIS opiera się na wielojęzycznej taksonomii EuroSciVoc, obejmującej wszystkie dziedziny nauki, w oparciu o półautomatyczny proces bazujący na technikach przetwarzania języka naturalnego. Więcej informacji: Europejski Słownik Naukowy.
Klasyfikacja projektów w serwisie CORDIS opiera się na wielojęzycznej taksonomii EuroSciVoc, obejmującej wszystkie dziedziny nauki, w oparciu o półautomatyczny proces bazujący na technikach przetwarzania języka naturalnego. Więcej informacji: Europejski Słownik Naukowy.
- nauki przyrodnicze matematyka matematyka czysta analiza matematyczna analiza Fouriera
- nauki przyrodnicze matematyka matematyka czysta geometria
- nauki przyrodnicze matematyka matematyka czysta analiza matematyczna równania różniczkowe równania różniczkowe cząstkowe
Aby użyć tej funkcji, musisz się zalogować lub zarejestrować
Przepraszamy… podczas wykonywania operacji wystąpił nieoczekiwany błąd.
Wymagane uwierzytelnienie. Powodem może być wygaśnięcie sesji.
Dziękujemy za przesłanie opinii. Wkrótce otrzymasz wiadomość e-mail z potwierdzeniem zgłoszenia. W przypadku wybrania opcji otrzymywania powiadomień o statusie zgłoszenia, skontaktujemy się również gdy status ulegnie zmianie.
Program(-y)
Wieloletnie programy finansowania, które określają priorytety Unii Europejskiej w obszarach badań naukowych i innowacji.
Wieloletnie programy finansowania, które określają priorytety Unii Europejskiej w obszarach badań naukowych i innowacji.
-
H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC)
GŁÓWNY PROGRAM
Wyświetl wszystkie projekty finansowane w ramach tego programu
Temat(-y)
Zaproszenia do składania wniosków dzielą się na tematy. Każdy temat określa wybrany obszar lub wybrane zagadnienie, których powinny dotyczyć wnioski składane przez wnioskodawców. Opis tematu obejmuje jego szczegółowy zakres i oczekiwane oddziaływanie finansowanego projektu.
Zaproszenia do składania wniosków dzielą się na tematy. Każdy temat określa wybrany obszar lub wybrane zagadnienie, których powinny dotyczyć wnioski składane przez wnioskodawców. Opis tematu obejmuje jego szczegółowy zakres i oczekiwane oddziaływanie finansowanego projektu.
System finansowania
Program finansowania (lub „rodzaj działania”) realizowany w ramach programu o wspólnych cechach. Określa zakres finansowania, stawkę zwrotu kosztów, szczegółowe kryteria oceny kwalifikowalności kosztów w celu ich finansowania oraz stosowanie uproszczonych form rozliczania kosztów, takich jak rozliczanie ryczałtowe.
Program finansowania (lub „rodzaj działania”) realizowany w ramach programu o wspólnych cechach. Określa zakres finansowania, stawkę zwrotu kosztów, szczegółowe kryteria oceny kwalifikowalności kosztów w celu ich finansowania oraz stosowanie uproszczonych form rozliczania kosztów, takich jak rozliczanie ryczałtowe.
ERC-STG - Starting Grant
Wyświetl wszystkie projekty finansowane w ramach tego programu finansowania
Zaproszenie do składania wniosków
Procedura zapraszania wnioskodawców do składania wniosków projektowych w celu uzyskania finansowania ze środków Unii Europejskiej.
Procedura zapraszania wnioskodawców do składania wniosków projektowych w celu uzyskania finansowania ze środków Unii Europejskiej.
(odnośnik otworzy się w nowym oknie) ERC-2014-STG
Wyświetl wszystkie projekty finansowane w ramach tego zaproszeniaInstytucja przyjmująca
Kwota netto dofinansowania ze środków Unii Europejskiej. Suma środków otrzymanych przez uczestnika, pomniejszona o kwotę unijnego dofinansowania przekazanego powiązanym podmiotom zewnętrznym. Uwzględnia podział unijnego dofinansowania pomiędzy bezpośrednich beneficjentów projektu i pozostałych uczestników, w tym podmioty zewnętrzne.
75794 PARIS
Francja
Ogół kosztów poniesionych przez organizację w związku z uczestnictwem w projekcie. Obejmuje koszty bezpośrednie i pośrednie. Kwota stanowi część całkowitego budżetu projektu.