European Commission logo
español español
CORDIS - Resultados de investigaciones de la UE
CORDIS

Micro-scale inhomogeneities in compressed systems and their impact onto the PROCESS- functioning-chain and the PRODUCT-characteristics

Descripción del proyecto

Mejora de la eficiencia de los sistemas de fluidos compresibles

Los sistemas de fluidos compresibles desempeñan un papel fundamental en diferentes procesos industriales, contribuyendo a la eficiencia global. Sin embargo, estos sistemas a menudo se enfrentan a retos relacionados con inhomogeneidades que pueden afectar de forma negativa a toda la cadena operativa. Dichas inhomogeneidades surgen debido a técnicas de alta presión con una difusividad inferior a la viscosidad cinemática, lo que provoca variaciones no deseadas durante el proceso de mezcla. Para abordar este problema, el equipo del proyecto Inhomogeneities, financiado con fondos europeos, pretende desarrollar una innovadora solución espectroscópica Raman no invasiva. Esta tecnología de vanguardia permitirá a los usuarios analizar los procesos en busca de inhomogeneidades, lo que facilitará una supervisión eficaz y la prevención de problemas críticos. Al mejorar la eficiencia de los sistemas de fluidos compresibles y reducir los residuos, este proyecto impulsará avances considerables en las operaciones industriales.

Objetivo

Compressed fluid systems handled in high pressure processes feature diffusivities smaller than the kinematic viscosity. Therefore during mixing the lifetime of micro(µ)-scale(s) inhomogeneities exceeds that one of macro(m)-scale(s) inhomogeneities. Thus m-s homogeneous systems can still exhibit µ-s inhomogeneities. They affect the functioning-chain of processes, e.g. reactions and phase-transitions or –separations, which themselves also take place on a sub-macro-scale.
Therefore it will be analyzed in situ how µ-s inhomogeneities influence the functioning chain of the particle generation (supercritical antisolvent technology), the reaction (high pressure combustion), and the phase-separation or phase-transition mechanisms (surfactant-free CO2-based micro-emulsions and gas hydrates) and to which extend these inhomogeneities are responsible for the characteristics of the product, such as unfavourable size distributions of particulate products and/or pollutant emissions.
On this purpose the here proposed and self-developed non-invasive and in situ Raman spectroscopic technique considers the INTENSITY-ratios of Raman signals to analyze the m-s composition and the SIGNATURE of the OH stretch vibration Raman signal of water (or alcohols) to analyze the µ-s composition of fluid mixtures. The SIGNATURE of the OH stretch vibration Raman signal is influenced by the development of the hydrogen bonds -an intermolecular interaction- and thus provides the µ-s composition, though the probe volume of the Raman sensor is m-s. The signal-INTENSITY-ratio and signal-SIGNATURE are extracted both from one and the same “m-s” Raman spectrum of the mixture. This allows the comparison of the degree of mixing on m-s and µ-s simultaneously, and enables the analysis of whether a system at any instance of mixing (instance of the onset of a reaction or a phase transition or –separation) has reached the favourable µ-s homogeneity, which would result in homogeneous and uniform products.

Régimen de financiación

ERC-STG - Starting Grant

Institución de acogida

TECHNISCHE UNIVERSITAET BERGAKADEMIE FREIBERG
Aportación neta de la UEn
€ 1 058 886,76
Dirección
AKADEMIESTRASSE 6
09599 Freiberg
Alemania

Ver en el mapa

Región
Sachsen Chemnitz Mittelsachsen
Tipo de actividad
Higher or Secondary Education Establishments
Enlaces
Coste total
€ 1 058 886,76

Beneficiarios (2)