European Commission logo
italiano italiano
CORDIS - Risultati della ricerca dell’UE
CORDIS

Micro-scale inhomogeneities in compressed systems and their impact onto the PROCESS- functioning-chain and the PRODUCT-characteristics

Descrizione del progetto

Miglioramento dell’efficienza dei sistemi a fluido compresso

I sistemi a fluido compresso svolgono un ruolo fondamentale in diversi processi industriali, contribuendo all’efficienza complessiva. Tuttavia, questi sistemi incontrano spesso problemi legati a disomogeneità che possono avere un impatto negativo sull’intera catena operativa. Queste disomogeneità sono dovute a tecniche ad alta pressione con diffusività inferiori alla viscosità cinematica, con conseguenti variazioni indesiderate durante il processo di miscelazione. Per affrontare questo problema, il progetto Inhomogeneities, finanziato dall’UE, mira a sviluppare una soluzione innovativa di spettroscopia Raman non invasiva. Questa tecnologia all’avanguardia consentirà agli utenti di analizzare i processi di ricerca delle disomogeneità, facilitando un monitoraggio efficace e prevenendo le criticità. Migliorando l’efficienza dei sistemi a fluido compresso e riducendo gli sprechi, questo progetto porterà a significativi progressi nelle operazioni industriali.

Obiettivo

Compressed fluid systems handled in high pressure processes feature diffusivities smaller than the kinematic viscosity. Therefore during mixing the lifetime of micro(µ)-scale(s) inhomogeneities exceeds that one of macro(m)-scale(s) inhomogeneities. Thus m-s homogeneous systems can still exhibit µ-s inhomogeneities. They affect the functioning-chain of processes, e.g. reactions and phase-transitions or –separations, which themselves also take place on a sub-macro-scale.
Therefore it will be analyzed in situ how µ-s inhomogeneities influence the functioning chain of the particle generation (supercritical antisolvent technology), the reaction (high pressure combustion), and the phase-separation or phase-transition mechanisms (surfactant-free CO2-based micro-emulsions and gas hydrates) and to which extend these inhomogeneities are responsible for the characteristics of the product, such as unfavourable size distributions of particulate products and/or pollutant emissions.
On this purpose the here proposed and self-developed non-invasive and in situ Raman spectroscopic technique considers the INTENSITY-ratios of Raman signals to analyze the m-s composition and the SIGNATURE of the OH stretch vibration Raman signal of water (or alcohols) to analyze the µ-s composition of fluid mixtures. The SIGNATURE of the OH stretch vibration Raman signal is influenced by the development of the hydrogen bonds -an intermolecular interaction- and thus provides the µ-s composition, though the probe volume of the Raman sensor is m-s. The signal-INTENSITY-ratio and signal-SIGNATURE are extracted both from one and the same “m-s” Raman spectrum of the mixture. This allows the comparison of the degree of mixing on m-s and µ-s simultaneously, and enables the analysis of whether a system at any instance of mixing (instance of the onset of a reaction or a phase transition or –separation) has reached the favourable µ-s homogeneity, which would result in homogeneous and uniform products.

Meccanismo di finanziamento

ERC-STG - Starting Grant

Istituzione ospitante

TECHNISCHE UNIVERSITAET BERGAKADEMIE FREIBERG
Contribution nette de l'UE
€ 1 058 886,76
Indirizzo
AKADEMIESTRASSE 6
09599 Freiberg
Germania

Mostra sulla mappa

Regione
Sachsen Chemnitz Mittelsachsen
Tipo di attività
Higher or Secondary Education Establishments
Collegamenti
Costo totale
€ 1 058 886,76

Beneficiari (2)