Description du projet
Faire progresser l’imagerie des synapses neuronales
Les neurones communiquent entre eux en transmettant des signaux électriques et chimiques par l’intermédiaire de jonctions spécialisées appelées «synapses». L’étude des organites et des groupes de protéines présents dans les synapses s’est révélée difficile en raison de leur petite taille et du faible espacement entre ces éléments. Le projet MoNaLISA, financé par le Conseil européen de la recherche, prévoit d’approfondir la microscopie par fluorescence à haute résolution, qui permet d’obtenir une résolution élevée ainsi qu’une analyse basée sur une seule molécule. Les chercheurs entendent résoudre les problèmes de vitesse d’enregistrement grâce à un microscope innovant qui permet de suivre les organites et les protéines neuronales. Ce projet introduit un nouveau paradigme pour la nano-imagerie rapide et quantitative dans le domaine des sciences de la vie.
Objectif
Synaptic function is difficult to analyze in living neurons using conventional optics, since the synaptic organelles and protein clusters are small and tightly spaced. The solution to this problem can come from the field of super-resolution fluorescence microscopy, or nanoscopy. However, the current approaches to nanoscopy are still far from reaching this goal. Single molecule-based approaches (including STORM and PALM) provide high spatial resolution, but slow recording, insufficient for live imaging. Ensemble approaches (including SSIM and STED) are able to record faster, but with poorer resolution or with high, potentially toxic, laser powers. It is currently impossible to image the same neuron for hours and days, with both high spatial (~30 nm) and temporal (10-1000 Hz) resolution, and with minimal photodamage. My aim is to fill this gap, by developing, for the first time, a microscope that combines the advantages of both single molecule-based and ensemble approaches. I will base the microscope on RESOLFT, a low-photodamage ensemble approach that I have pioneered recently. I will use line patterns to speed up the recording and 2photon-switching for 3D ability. I will combine this with sensitive detection schemes that allow single-molecule detection and counting, relying on my previous expertise with PALM and GSDIM. The new set-up, termed molecular nanoscale long-term imaging with sequential acquisition (MoNaLISA), will track neuronal organelles and proteins on different time scales, spanning from milliseconds to days, with a resolution close to the molecular scale. To obtain the first proof-of-principle results, I will address several issues still open in the synaptic transmission field, relating to synaptic vesicle recycling, biogenesis and degradation. Overall, my project will introduce a novel paradigm to imaging in the life sciences, which will enable fast and quantitative nano-imaging of cells and tissues.
Champ scientifique
- natural sciencescomputer and information sciencessoftware
- natural sciencesphysical sciencesopticsmicroscopysuper resolution microscopy
- natural sciencesbiological sciencesbiochemistrybiomoleculesproteins
- humanitiesartsmodern and contemporary artcinematography
- natural sciencesphysical sciencesopticslaser physics
Programme(s)
Thème(s)
Régime de financement
ERC-STG - Starting GrantInstitution d’accueil
100 44 Stockholm
Suède