CORDIS - Forschungsergebnisse der EU
CORDIS

The physics and forensics of neutron star explosions

Projektbeschreibung

Innovatives Verfahren zur Erforschung der Tiefen von Neutronensternen

Neutronensterne sind der perfekte Prüfstand für starke Kräfte unter extremen Bedingungen, mit Kerndichten, die bisweilen das 10-Fache derjenigen von Atomkernen betragen. Durch die Untersuchung der Zustandsgleichung können Forschende die Physik der dichten Materie anhand makroskopischer Beobachtungsgrößen wie Masse und Radius erforschen. Das vom Europäischen Forschungsrat finanzierte Projekt CSINEUTRONSTAR wird ein innovatives Verfahren zur gleichzeitigen Messung von Masse und Radius auf der Grundlage von Burst-Schwingungen anwenden. Diese entstehen, wenn Material aus einem Begleitstern eine thermonukleare Explosion auf der Oberfläche des Neutronensterns verursacht. Die Forschenden werden versuchen, neue Erkenntnisse über den bisher unbekannten Mechanismus zu gewinnen, der Burst-Schwingungen erzeugt.

Ziel

Neutron stars offer a unique environment in which to develop and test theories of the strong force. Densities in neutron star cores can reach up to ten times the density of a normal atomic nucleus, and the stabilizing effect of gravitational confinement permits long-timescale weak interactions. This generates matter that is neutron-rich, and opens up the possibility of stable states of strange matter, something that can only exist in neutron stars. Strong force physics is encoded in the Equation of State (EOS), the pressure-density relation. This is linked to macroscopic observables such as mass M and radius R via the stellar structure equations. By measuring and inverting the M-R relation we can recover the EOS and diagnose the underlying dense matter physics.

This proposal focuses on a very promising technique for simultaneous measurement of M and R. It exploits hotspots (burst oscillations) that form on the neutron star surface when material accreted from a companion star undergoes a thermonuclear explosion (a Type I X-ray burst). As the star rotates, the hotspot gives rise to a pulsation. Relativistic effects then encode information about M and R into the pulse profile. However the mechanism that generates burst oscillations remains unknown, 18 years after their discovery. This is frustrating in terms of our understanding of thermonuclear bursts. It also leads to uncertainties in the precise form of the underlying surface emission pattern (a key factor in the pulse profile fitting process), which must be addressed to cement their reliability as diagnostics of M and R.

This proposal has two objectives. Firstly, to resolve the burst oscillation mechanism via an ambitious programme of theoretical and observational analysis. Secondly, to ensure that burst oscillations are a robust tool for measurement of M and R by determining the effect of the surface pattern uncertainty on pulse profile fitting, independent of efforts to constrain the mechanism.

Finanzierungsplan

ERC-STG - Starting Grant

Gastgebende Einrichtung

UNIVERSITEIT VAN AMSTERDAM
Netto-EU-Beitrag
€ 1 499 999,00
Adresse
SPUI 21
1012WX Amsterdam
Niederlande

Auf der Karte ansehen

Region
West-Nederland Noord-Holland Groot-Amsterdam
Aktivitätstyp
Higher or Secondary Education Establishments
Links
Gesamtkosten
€ 1 499 999,00

Begünstigte (1)