European Commission logo
español español
CORDIS - Resultados de investigaciones de la UE
CORDIS

Scanning SQUID view of emergent states at interfaces

Descripción del proyecto

Nanomagnetismo, superconductividad e intensidad de corriente en interfaces de baja dimensión

A menudo se producen fenómenos exóticos en materiales de escalas muy pequeñas, como en películas ultrafinas o nanomateriales. Las interacciones en las interfaces de dos materiales de tan bajas dimensiones desempeñan un papel fundamental en algunas aplicaciones, pero pueden ser difíciles de medir. El equipo del proyecto SENSQUID, financiado por el Consejo Europeo de Investigación, se centrará en la detección de estados emergentes en las interfaces de baja dimensión entre óxidos de metales de transición con el objetivo de detectar el nanomagnetismo, la superconductividad y la intensidad de corriente. Creará una tecnología avanzada de dispositivos superconductores de interferencia cuántica de barrido (SQUID, por sus siglas en inglés) para conseguir temperaturas más elevadas, una mejor resolución, una cartografía simultánea de propiedades ortogonales y alto rendimiento. La detección de nuevos estados de la materia y sus propiedades permitirá controlar los materiales diseñados a escala atómica para la nanoelectrónica del futuro.

Objetivo

The emergence of novel states of matter in low-dimensional systems is one of the most intriguing current topics in condensed matter physics. For instance, interfaces between certain non-magnetic insulating oxides were shown to give rise to surprising metallic, superconducting, and magnetic states, which are still far from being understood. I have recently demonstrated in LaAlO3/SrTiO3 that there is a strong influence of the constituent’s structure on the interface conductivity (quasi-1D rather than 2D) and sub-micron ferromagnetic patches that coexist with inhomogeneous superconductivity. However, the origin of the interface magnetism, its relation to transport properties, and the mechanisms that control the different interface states are yet to be understood. I believe that the only way to fully understand the electronic and magnetic behavior in reduced dimensions is by combining extremely sensitive, non-invasive, local techniques, but such characterization tools are lacking. The aim of this project is to investigate the rich phenomena that appear at transition metal oxides interfaces, starting with LaAlO3/SrTiO3 as a model system, and expanding to other ground states (e.g. multiferroics, quantum materials, metal-insulator), as well as to other low-dimensional systems, including 2D-superconductors, topological insulators and carbon nanotube coils. To this end, I will develop an advanced scanning SQUID technology for higher temperatures, improved resolution, simultaneous mapping of orthogonal properties, and high throughput. By detecting nano-magnetism, traces of superconductivity, and non-invasively mapping the path of current flow, our tool will detect new states of matter, follow their interactions, correlations, and response to modulation in the local potential with extreme sensitivity. Our results will open up access to fundamental physics in atomically engineered materials, and to the control of their properties for use in next generation nanoelectronics.

Régimen de financiación

ERC-STG - Starting Grant

Institución de acogida

BAR ILAN UNIVERSITY
Aportación neta de la UEn
€ 1 499 778,00
Dirección
BAR ILAN UNIVERSITY CAMPUS
52900 Ramat Gan
Israel

Ver en el mapa

Tipo de actividad
Higher or Secondary Education Establishments
Enlaces
Coste total
€ 1 499 778,00

Beneficiarios (1)