Project description DEENESFRITPL Geometry and material breakthroughs could advance third-generation solar cells Third-generation solar cells aim to improve efficiency and reduce production costs compared with their predecessors, making solar energy more accessible and competitive with traditional energy sources. The ERC-funded SOLACYLIN project will advance understanding of third-generation photovoltaic systems by creating stacked materials with well-defined, tuneable, nanocylindrical geometry. Researchers will utilise ordered anodic porous oxides and atomic layer deposition to create these stacks. Furthermore, novel surface reaction schemes for functional materials with tailored physical and chemical properties will be investigated. Ultimately, researchers will optimise interface quality and assess the electrical and photovoltaic performance of p-i-n junctions. By analysing how photovoltaic parameters depend on individual layer thickness and cylinder length, they could enhance understanding of efficiency limitations and suggest improvements in solar cell technology. Show the project objective Hide the project objective Objective The ERC Consolidator Grant project SOLACYLIN aims at providing experimental insight into the function of 'third-generation' photovoltaic systems by generating materials stacks structured in a well-defined, accurately tunable, nanocylindrical geometry.To this goal, we will develop and exploit advanced preparative methods based on two fundamental ingredients: (a) ordered 'anodic' porous oxides and (b) atomic layer deposition (ALD). The former solids will be generated as templates providing ordered arrays of straight, cyclindrical pores, the diameter and length of which can be varied between 20 nm and 300 nm and between 0.5 microns and 50 microns, respectively. The latter method will be used to coat the inner pore walls with one or several layers of the photovoltaic stack, each with a thickness set to values chosen between 1 nm and 30 nm.We will invent and characterize novel surface reaction schemes for the deposition in ALD mode (from the gas phase and from solutions) of functional materials (doped semiconductors and intrinsic light absorbers) with tailored chemical and physical properties. We will investigate the experimental conditions in which they can be combined in a way that optimizes the quality of their interfaces.Finally, we will quantify the electrical and photovoltaic performance of p-i-n junctions prepared with our methods. We will have the unique capability of describing in a systematic, accurate manner how the experimental photovoltaic parameters depend on the individual thicknesses of the individual layers and on the length of the cylinders. This direct experimental handle on the amount of light absorbed, on the one hand, and the charge carrier transport distances to the electrical contacts, on the other hand, will be correlated with the relevant material parameters (absorption coefficients, carrier mobilities). This information will unveil the phenomena limiting the efficiency of each type of solar cell, and suggest avenues to remedy them. Fields of science engineering and technologymaterials engineeringcoating and filmsengineering and technologyelectrical engineering, electronic engineering, information engineeringelectronic engineeringsensorsnatural sciencesphysical scienceselectromagnetism and electronicssemiconductivitynatural sciencesmathematicspure mathematicsgeometryengineering and technologyenvironmental engineeringenergy and fuelsrenewable energysolar energyphotovoltaic Programme(s) H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC) Main Programme Topic(s) ERC-CoG-2014 - ERC Consolidator Grant Call for proposal ERC-2014-CoG See other projects for this call Funding Scheme ERC-COG - Consolidator Grant Coordinator FRIEDRICH-ALEXANDER-UNIVERSITAET ERLANGEN-NUERNBERG Net EU contribution € 1 938 655,00 Address Schlossplatz 4 91054 Erlangen Germany See on map Region Bayern Mittelfranken Erlangen, Kreisfreie Stadt Activity type Higher or Secondary Education Establishments Links Contact the organisation Opens in new window Website Opens in new window Participation in EU R&I programmes Opens in new window HORIZON collaboration network Opens in new window Other funding € 0,00 Beneficiaries (1) Sort alphabetically Sort by Net EU contribution Expand all Collapse all FRIEDRICH-ALEXANDER-UNIVERSITAET ERLANGEN-NUERNBERG Germany Net EU contribution € 1 938 655,00 Address Schlossplatz 4 91054 Erlangen See on map Region Bayern Mittelfranken Erlangen, Kreisfreie Stadt Activity type Higher or Secondary Education Establishments Links Contact the organisation Opens in new window Website Opens in new window Participation in EU R&I programmes Opens in new window HORIZON collaboration network Opens in new window Other funding € 0,00