Skip to main content
European Commission logo
italiano italiano
CORDIS - Risultati della ricerca dell’UE
CORDIS

A preparative approach to geometric effects in innovative solar cell types based on a nanocylindrical structure

Descrizione del progetto

Le scoperte su geometria e materiali potrebbero far progredire le celle solari di terza generazione

Le celle solari di terza generazione mirano a migliorare l’efficienza e a ridurre i costi di produzione rispetto ai loro predecessori, rendendo l’energia solare più accessibile e competitiva rispetto alle fonti energetiche tradizionali. Il progetto SOLACYLIN, finanziato dal CER, farà progredire la comprensione dei sistemi fotovoltaici di terza generazione creando materiali impilati con una geometria nanocilindrica ben definita e modulabile. I ricercatori utilizzeranno gli ossidi porosi anodici ordinati e la deposizione di strati atomici per creare questi stack. Inoltre, verranno studiati nuovi schemi di reazione superficiale per ottenere materiali funzionali con proprietà fisiche e chimiche personalizzate. In definitiva, i ricercatori ottimizzeranno la qualità dell’interfaccia e valuteranno le prestazioni elettriche e fotovoltaiche delle giunzioni p-i-n. Analizzando come i parametri fotovoltaici dipendano dallo spessore dei singoli strati e dalla lunghezza dei cilindri, potrebbero migliorare la comprensione dei limiti di efficienza e suggerire miglioramenti nella tecnologia delle celle solari.

Obiettivo

The ERC Consolidator Grant project SOLACYLIN aims at providing experimental insight into the function of 'third-generation' photovoltaic systems by generating materials stacks structured in a well-defined, accurately tunable, nanocylindrical geometry.
To this goal, we will develop and exploit advanced preparative methods based on two fundamental ingredients: (a) ordered 'anodic' porous oxides and (b) atomic layer deposition (ALD). The former solids will be generated as templates providing ordered arrays of straight, cyclindrical pores, the diameter and length of which can be varied between 20 nm and 300 nm and between 0.5 microns and 50 microns, respectively. The latter method will be used to coat the inner pore walls with one or several layers of the photovoltaic stack, each with a thickness set to values chosen between 1 nm and 30 nm.
We will invent and characterize novel surface reaction schemes for the deposition in ALD mode (from the gas phase and from solutions) of functional materials (doped semiconductors and intrinsic light absorbers) with tailored chemical and physical properties. We will investigate the experimental conditions in which they can be combined in a way that optimizes the quality of their interfaces.
Finally, we will quantify the electrical and photovoltaic performance of p-i-n junctions prepared with our methods. We will have the unique capability of describing in a systematic, accurate manner how the experimental photovoltaic parameters depend on the individual thicknesses of the individual layers and on the length of the cylinders. This direct experimental handle on the amount of light absorbed, on the one hand, and the charge carrier transport distances to the electrical contacts, on the other hand, will be correlated with the relevant material parameters (absorption coefficients, carrier mobilities). This information will unveil the phenomena limiting the efficiency of each type of solar cell, and suggest avenues to remedy them.

Meccanismo di finanziamento

ERC-COG - Consolidator Grant

Istituzione ospitante

FRIEDRICH-ALEXANDER-UNIVERSITAET ERLANGEN-NUERNBERG
Contribution nette de l'UE
€ 1 938 655,00
Indirizzo
SCHLOSSPLATZ 4
91054 Erlangen
Germania

Mostra sulla mappa

Regione
Bayern Mittelfranken Erlangen, Kreisfreie Stadt
Tipo di attività
Higher or Secondary Education Establishments
Collegamenti
Costo totale
€ 1 938 655,00

Beneficiari (1)