Skip to main content
European Commission logo print header

Chromatin function in DNA Double Strand breaks repair: Prime, repair and restore DSB Inducible via AsiSI

Description du projet

Le rôle de la chromatine dans la réparation des dommages à l’ADN

Les cassures double brin (DSB pour «double-stranded break») sont un type de dommage à l’ADN qui implique la coupure complète des deux brins d’ADN, généralement à la suite de radiations ionisantes, d’agents chimiques ou d’erreurs au cours de la réplication de l’ADN. Les cellules ont développé des mécanismes complexes pour réparer les DSB et préserver l’intégrité du génome. Les facteurs qui déterminent le choix de la voie de réparation demeurent toutefois méconnus, malgré l’implication apparente de l’environnement chromatinien sur le site de la cassure. Financé par le Conseil européen de la recherche, le projet DIvA entend étudier le rôle de la chromatine dans la réparation des DSB. Les chercheurs utiliseront des technologies génomiques et protéomiques pour étudier la façon dont les chromosomes endommagés se réorganisent dans le noyau et restaurent le paysage chromatinien initial après réparation pour maintenir la stabilité de l’épigénome.

Objectif

"Among the types of damage, DNA Double Strands Breaks (DSBs) are the most deleterious, as illustrated by the variety of human diseases associated with DSB repair defects. Repair of DSB into the chromatin context raises several questions that we aim to address in this proposal. Firstly, it is likely that the chromatin environment where a break occurs influences the choice of repair pathway. Since the different DSB repair mechanisms can lead to different ""scar"" on the genome, further studies are required to elucidate how chromatin structure regulates the targeting of DSB repair machineries. Secondly, DNA packaging into chromatin hinders detection and repair of DSBs and many chromatin modifications were recently identified as induced around DSBs to facilitate repair. However, a complete picture of the chromatin landscape set up at DSB, and more specifically the set of histone modifications associated with each repair pathway (""repair histone code"") is still awaited. In addition, whether and how damaged chromosomes are reorganized within the nucleus is still unknown. Finally, once repair has been completed, the initial chromatin landscape must be faithfully restored in order to maintain epigenome stability and cell fate.
Using an experimental system we recently developed (called DIvA for DSB Inducible via AsiSI), that allows the induction of multiple sequence-specific DSBs widespread across the genome, we propose to investigate these uncovered aspects of the relationship between chromatin and DSB repair. By high-throughput genomic and proteomic technologies, we will try (i) to understand the contribution of chromatin in the DSB repair pathway choice (PRIME), (ii) to describe more thoroughly the chromatin remodeling events and the spatial chromosomes reorganization, that occur concomitantly to DSB to promote adequate repair (REPAIR), and (iii) to elucidate the processes at work to restore epigenome integrity after DSB repair (RESTORE).
"

Régime de financement

ERC-COG - Consolidator Grant

Institution d’accueil

CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
Contribution nette de l'UE
€ 2 000 000,00
Adresse
RUE MICHEL ANGE 3
75794 Paris
France

Voir sur la carte

Région
Ile-de-France Ile-de-France Paris
Type d’activité
Research Organisations
Liens
Coût total
€ 2 000 000,00

Bénéficiaires (1)