Objetivo
The PI proposes to study the asymptotic behavior of various invariants of discrete groups and their actions, of sparse graphs and of locally symmetric spaces. The game is to connect the asymptotic behavior of an invariant on a sequence of finite models to an analytic invariant on a suitable limit object of the sequence and then use the connection to get new results in both the finite and infinite worlds. The recently emerging notion of invariant random subgroups, initiated by the PI, serves as a unifying language for convergence.
These invariants include the minimal number of generators, deficiency, Betti numbers over arbitrary fields, various spectral and representation theoretic invariants, graph polynomials and entropy. The limit objects arising are invariant processes on groups, profinite actions, graphings, invariant random subgroups and measured complexes. The analytic invariants include L2 Betti numbers, spectral and Plancherel measures, cost and its higher order versions, matching and chromatic measures and entropy per site.
Energy typically flows both ways between the finite and infinite world and also between the different invariants. We list five recent applications from the PI that emerged from such connections. 1) Any large volume locally symmetric semisimple space has large injectivity radius at most of its points; 2) The rank gradient of a chain equals the cost-1 of the profinite action of the chain; 3) Countable-to-one cellular automata over a sofic group preserve the Lebesque measure; 4) Ramanujan graphs have essentially large girth; 5) The matching measure is continuous for graph convergence, giving new estimates on monomer-dimer free energies.
Besides asymptotic group theory and graph theory, the tools of the proposed research come from probability theory, ergodic theory and statistical mechanics. The proposed research will lead to further applications in 3-manifold theory, geometry and ergodic theory.
Ámbito científico (EuroSciVoc)
CORDIS clasifica los proyectos con EuroSciVoc, una taxonomía plurilingüe de ámbitos científicos, mediante un proceso semiautomático basado en técnicas de procesamiento del lenguaje natural. Véas: El vocabulario científico europeo..
CORDIS clasifica los proyectos con EuroSciVoc, una taxonomía plurilingüe de ámbitos científicos, mediante un proceso semiautomático basado en técnicas de procesamiento del lenguaje natural. Véas: El vocabulario científico europeo..
- ciencias naturales ciencias físicas física cuántica
- ciencias naturales ciencias físicas mecánica clásica mecánica estadística
- ciencias naturales matemáticas matemáticas puras matemáticas discretas teoría de grafos
- ciencias naturales matemáticas matemáticas aplicadas estadística y probabilidad
- ciencias naturales matemáticas matemáticas puras álgebra geometría algebraica
Para utilizar esta función, debe iniciar sesión o registrarse
Le pedimos disculpas, pero se ha producido un error inesperado durante la ejecución.
Necesita estar autentificado. Puede que su sesión haya finalizado.
Gracias por su comentario. En breve recibirá un correo electrónico para confirmar el envío. Si ha seleccionado que se le notifique sobre el estado del informe, también se le contactará cuando el estado del informe cambie.
Programa(s)
Programas de financiación plurianuales que definen las prioridades de la UE en materia de investigación e innovación.
Programas de financiación plurianuales que definen las prioridades de la UE en materia de investigación e innovación.
-
H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC)
PROGRAMA PRINCIPAL
Ver todos los proyectos financiados en el marco de este programa
Tema(s)
Las convocatorias de propuestas se dividen en temas. Un tema define una materia o área específica para la que los solicitantes pueden presentar propuestas. La descripción de un tema comprende su alcance específico y la repercusión prevista del proyecto financiado.
Las convocatorias de propuestas se dividen en temas. Un tema define una materia o área específica para la que los solicitantes pueden presentar propuestas. La descripción de un tema comprende su alcance específico y la repercusión prevista del proyecto financiado.
Régimen de financiación
Régimen de financiación (o «Tipo de acción») dentro de un programa con características comunes. Especifica: el alcance de lo que se financia; el porcentaje de reembolso; los criterios específicos de evaluación para optar a la financiación; y el uso de formas simplificadas de costes como los importes a tanto alzado.
Régimen de financiación (o «Tipo de acción») dentro de un programa con características comunes. Especifica: el alcance de lo que se financia; el porcentaje de reembolso; los criterios específicos de evaluación para optar a la financiación; y el uso de formas simplificadas de costes como los importes a tanto alzado.
ERC-COG - Consolidator Grant
Ver todos los proyectos financiados en el marco de este régimen de financiación
Convocatoria de propuestas
Procedimiento para invitar a los solicitantes a presentar propuestas de proyectos con el objetivo de obtener financiación de la UE.
Procedimiento para invitar a los solicitantes a presentar propuestas de proyectos con el objetivo de obtener financiación de la UE.
(se abrirá en una nueva ventana) ERC-2014-CoG
Ver todos los proyectos financiados en el marco de esta convocatoriaInstitución de acogida
Aportación financiera neta de la UE. Es la suma de dinero que recibe el participante, deducida la aportación de la UE a su tercero vinculado. Considera la distribución de la aportación financiera de la UE entre los beneficiarios directos del proyecto y otros tipos de participantes, como los terceros participantes.
1053 BUDAPEST
Hungría
Los costes totales en que ha incurrido esta organización para participar en el proyecto, incluidos los costes directos e indirectos. Este importe es un subconjunto del presupuesto total del proyecto.