Skip to main content
Weiter zur Homepage der Europäischen Kommission (öffnet in neuem Fenster)
Deutsch Deutsch
CORDIS - Forschungsergebnisse der EU
CORDIS

Asymptotic invariants of discrete groups, sparse graphs and locally symmetric spaces

Ziel

The PI proposes to study the asymptotic behavior of various invariants of discrete groups and their actions, of sparse graphs and of locally symmetric spaces. The game is to connect the asymptotic behavior of an invariant on a sequence of finite models to an analytic invariant on a suitable limit object of the sequence and then use the connection to get new results in both the finite and infinite worlds. The recently emerging notion of invariant random subgroups, initiated by the PI, serves as a unifying language for convergence.

These invariants include the minimal number of generators, deficiency, Betti numbers over arbitrary fields, various spectral and representation theoretic invariants, graph polynomials and entropy. The limit objects arising are invariant processes on groups, profinite actions, graphings, invariant random subgroups and measured complexes. The analytic invariants include L2 Betti numbers, spectral and Plancherel measures, cost and its higher order versions, matching and chromatic measures and entropy per site.

Energy typically flows both ways between the finite and infinite world and also between the different invariants. We list five recent applications from the PI that emerged from such connections. 1) Any large volume locally symmetric semisimple space has large injectivity radius at most of its points; 2) The rank gradient of a chain equals the cost-1 of the profinite action of the chain; 3) Countable-to-one cellular automata over a sofic group preserve the Lebesque measure; 4) Ramanujan graphs have essentially large girth; 5) The matching measure is continuous for graph convergence, giving new estimates on monomer-dimer free energies.

Besides asymptotic group theory and graph theory, the tools of the proposed research come from probability theory, ergodic theory and statistical mechanics. The proposed research will lead to further applications in 3-manifold theory, geometry and ergodic theory.

Wissenschaftliches Gebiet (EuroSciVoc)

CORDIS klassifiziert Projekte mit EuroSciVoc, einer mehrsprachigen Taxonomie der Wissenschaftsbereiche, durch einen halbautomatischen Prozess, der auf Verfahren der Verarbeitung natürlicher Sprache beruht. Siehe: Das European Science Vocabulary.

Sie müssen sich anmelden oder registrieren, um diese Funktion zu nutzen

Programm/Programme

Mehrjährige Finanzierungsprogramme, in denen die Prioritäten der EU für Forschung und Innovation festgelegt sind.

Thema/Themen

Aufforderungen zur Einreichung von Vorschlägen sind nach Themen gegliedert. Ein Thema definiert einen bestimmten Bereich oder ein Gebiet, zu dem Vorschläge eingereicht werden können. Die Beschreibung eines Themas umfasst seinen spezifischen Umfang und die erwarteten Auswirkungen des finanzierten Projekts.

Finanzierungsplan

Finanzierungsregelung (oder „Art der Maßnahme“) innerhalb eines Programms mit gemeinsamen Merkmalen. Sieht folgendes vor: den Umfang der finanzierten Maßnahmen, den Erstattungssatz, spezifische Bewertungskriterien für die Finanzierung und die Verwendung vereinfachter Kostenformen wie Pauschalbeträge.

ERC-COG - Consolidator Grant

Alle im Rahmen dieses Finanzierungsinstruments finanzierten Projekte anzeigen

Aufforderung zur Vorschlagseinreichung

Verfahren zur Aufforderung zur Einreichung von Projektvorschlägen mit dem Ziel, eine EU-Finanzierung zu erhalten.

(öffnet in neuem Fenster) ERC-2014-CoG

Alle im Rahmen dieser Aufforderung zur Einreichung von Vorschlägen finanzierten Projekte anzeigen

Gastgebende Einrichtung

HUN-REN RENYI ALFRED MATEMATIKAI KUTATOINTEZET
Netto-EU-Beitrag

Finanzieller Nettobeitrag der EU. Der Geldbetrag, den der Beteiligte erhält, abzüglich des EU-Beitrags an mit ihm verbundene Dritte. Berücksichtigt die Aufteilung des EU-Finanzbeitrags zwischen den direkten Begünstigten des Projekts und anderen Arten von Beteiligten, wie z. B. Dritten.

€ 1 386 250,00
Adresse
REALTANODA STREET 13-15
1053 Budapest
Ungarn

Auf der Karte ansehen

Region
Közép-Magyarország Budapest Budapest
Aktivitätstyp
Other
Links
Gesamtkosten

Die Gesamtkosten, die dieser Organisation durch die Beteiligung am Projekt entstanden sind, einschließlich der direkten und indirekten Kosten. Dieser Betrag ist Teil des Gesamtbudgets des Projekts.

€ 1 386 250,00

Begünstigte (1)

Mein Booklet 0 0