European Commission logo
français français
CORDIS - Résultats de la recherche de l’UE
CORDIS

Magnetic approaches for Tissue Mechanics and Engineering

Description du projet

La manipulation magnétique des cellules au service d’une ingénierie tissulaire pionnière

Les cellules réagissent à divers signaux, notamment mécaniques, chimiques, électriques et magnétiques. Le signal magnétique est probablement le moins exploré lorsqu’il s’agit de contrôler et de moduler la formation des tissus pour l’ingénierie tissulaire. Le projet MaTissE, financé par le Conseil européen de la recherche, introduira en toute sécurité des nanoparticules magnétiques dans les cellules thérapeutiques, qui pourront ainsi être manipulées à distance par des aimants externes. En utilisant sa technique brevetée pour manipuler les cellules magnétisées, l’équipe formera des tissus de taille et de forme contrôlées au moyen d’un «bioréacteur magnétique» innovant. La possibilité d’utiliser l’imagerie par résonance magnétique à toutes les étapes du processus facilitera son adoption clinique. En outre, des méthodes nanomagnétiques permettront d’étudier le devenir des nanomatériaux in situ.

Objectif

"While magnetic nanomaterials are increasingly used as clinical agents for imaging and therapy, their use as a tool for tissue engineering opens up challenging perspectives that have rarely been explored. Lying at the interface between biophysics and nanomedicine, and based on magnetic techniques, the proposed project aims to magnetically design functional tissues and to explore the tissular fate of nanomaterials. Magnetic nanoparticles will be safely introduced into therapeutic cells, thus allowing them to be remotely manipulated by external magnets. 3D manipulations of the magnetized cells (patented in 2012) will be used to form tissues with a controlled size and shape through the development of a unique magnetic bioreactor. In a self-integrating all-in-one process, 3D tissue will be shaped from cellular ""bricks"" without the need for a scaffold. The magnetic tissue will be amenable to mechanical stimulation and in situ imaging at each step of its maturation. The project is inherently multidisciplinary:
1) From a biophysics standpoint, controlled tissue stimulation, forced cell alignment, and mapping of cell-cell forces, will be used to answer pressing questions on the role of physical stresses in cell and tissue functions, such as differentiation.
2) From a regenerative medicine standpoint, this magnetic technology will be applied to cartilage and cardiac tissue repair. The functionality of the constructs and their centimetric size range, combined with a surgeon-friendly tissue handling with a dedicated magnetic tool, and the inherent magnetic resonance imaging properties of the constructs will be major advantages for clinical translation.
3) From a nanomaterials standpoint, nanomaterial fate will be explored in situ using nanomagnetic methods, both at the tissue scale (macroscopic) and at the nanoscale. This is a necessary corollary for the use of nanomaterials in regenerative medicine, and one that is largely unexplored."

Régime de financement

ERC-COG - Consolidator Grant

Institution d’accueil

UNIVERSITE PARIS CITE
Contribution nette de l'UE
€ 1 307 625,00
Adresse
85 BD SAINT GERMAIN
75006 Paris
France

Voir sur la carte

Région
Ile-de-France Ile-de-France Paris
Type d’activité
Higher or Secondary Education Establishments
Liens
Coût total
€ 1 589 000,00

Bénéficiaires (2)